Single-Step Reconstruction-Free Anomaly Detection and Segmentation via Diffusion Models
- URL: http://arxiv.org/abs/2508.04818v1
- Date: Wed, 06 Aug 2025 18:56:08 GMT
- Title: Single-Step Reconstruction-Free Anomaly Detection and Segmentation via Diffusion Models
- Authors: Mehrdad Moradi, Marco Grasso, Bianca Maria Colosimo, Kamran Paynabar,
- Abstract summary: We introduce Reconstruction-free Anomaly Detection with Attention-based diffusion models in Real-time (RADAR)<n>RADAR overcomes the limitations of reconstruction-based anomaly detection.<n>We evaluate RADAR on real-world 3D-printed material and the MVTec-AD dataset.
- Score: 1.1487074612765584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models have demonstrated significant success in anomaly detection and segmentation over the past decade. Recently, diffusion models have emerged as a powerful alternative, outperforming previous approaches such as GANs and VAEs. In typical diffusion-based anomaly detection, a model is trained on normal data, and during inference, anomalous images are perturbed to a predefined intermediate step in the forward diffusion process. The corresponding normal image is then reconstructed through iterative reverse sampling. However, reconstruction-based approaches present three major challenges: (1) the reconstruction process is computationally expensive due to multiple sampling steps, making real-time applications impractical; (2) for complex or subtle patterns, the reconstructed image may correspond to a different normal pattern rather than the original input; and (3) Choosing an appropriate intermediate noise level is challenging because it is application-dependent and often assumes prior knowledge of anomalies, an assumption that does not hold in unsupervised settings. We introduce Reconstruction-free Anomaly Detection with Attention-based diffusion models in Real-time (RADAR), which overcomes the limitations of reconstruction-based anomaly detection. Unlike current SOTA methods that reconstruct the input image, RADAR directly produces anomaly maps from the diffusion model, improving both detection accuracy and computational efficiency. We evaluate RADAR on real-world 3D-printed material and the MVTec-AD dataset. Our approach surpasses state-of-the-art diffusion-based and statistical machine learning models across all key metrics, including accuracy, precision, recall, and F1 score. Specifically, RADAR improves F1 score by 7% on MVTec-AD and 13% on the 3D-printed material dataset compared to the next best model. Code available at: https://github.com/mehrdadmoradi124/RADAR
Related papers
- Solving Inverse Problems with FLAIR [59.02385492199431]
Flow-based latent generative models are able to generate images with remarkable quality, even enabling text-to-image generation.<n>We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems.<n>Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
arXiv Detail & Related papers (2025-06-03T09:29:47Z) - One-for-More: Continual Diffusion Model for Anomaly Detection [63.50488826645681]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.<n>Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''<n>We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection [12.207437451118036]
3D anomaly detection plays a crucial role in monitoring parts for localized inherent defects in precision manufacturing.
Embedding-based and reconstruction-based approaches are among the most popular and successful methods.
We propose R3D-AD, reconstructing anomalous point clouds by diffusion model for precise 3D anomaly detection.
arXiv Detail & Related papers (2024-07-15T16:10:58Z) - Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection [2.209921757303168]
Diffusion models have found valuable applications in anomaly detection by capturing the nominal data distribution and identifying anomalies via reconstruction.
Despite their merits, they struggle to localize anomalies of varying scales, especially larger anomalies such as entire missing components.
We present a novel framework that enhances the capability of diffusion models, by extending the previous introduced implicit conditioning approach Meng et al.
2022 in three significant ways.
arXiv Detail & Related papers (2024-01-09T09:57:38Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
We propose a Light and Anti-overfitting Retraining Approach (LARA) for deep variational auto-encoder based time series anomaly detection methods (VAEs)
This work aims to make three novel contributions: 1) the retraining process is formulated as a convex problem and can converge at a fast rate as well as prevent overfitting; 2) designing a ruminate block, which leverages the historical data without the need to store them; and 3) mathematically proving that when fine-tuning the latent vector and reconstructed data, the linear formations can achieve the least adjusting errors between the ground truths and the fine-tuned ones.
arXiv Detail & Related papers (2023-10-09T12:36:16Z) - One-Step Detection Paradigm for Hyperspectral Anomaly Detection via
Spectral Deviation Relationship Learning [17.590080772567678]
Hyperspectral anomaly detection involves identifying the targets that deviate spectrally from their surroundings.
The current deep detection models are optimized to complete a proxy task, such as background reconstruction or generation.
In this paper, an unsupervised transferred direct detection model is proposed, which is optimized directly for the anomaly detection task.
arXiv Detail & Related papers (2023-03-22T06:41:09Z) - Unsupervised Visual Defect Detection with Score-Based Generative Model [17.610722842950555]
We focus on the unsupervised visual defect detection and localization tasks.
We propose a novel framework based on the recent score-based generative models.
We evaluate our method on several datasets to demonstrate its effectiveness.
arXiv Detail & Related papers (2022-11-29T11:06:29Z) - Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models [33.343489006271255]
Diffusion models have emerged as the new state-of-the-art generative model with high quality samples.
We propose to augment the 2D diffusion prior with a model-based prior in the remaining direction at test time, such that one can achieve coherent reconstructions across all dimensions.
Our method can be run in a single commodity GPU, and establishes the new state-of-the-art.
arXiv Detail & Related papers (2022-11-19T10:32:21Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.