Can SGD Handle Heavy-Tailed Noise?
- URL: http://arxiv.org/abs/2508.04860v1
- Date: Wed, 06 Aug 2025 20:09:41 GMT
- Title: Can SGD Handle Heavy-Tailed Noise?
- Authors: Ilyas Fatkhullin, Florian Hübler, Guanghui Lan,
- Abstract summary: Gradient Descent (SGD) is a machine learning project of large-scale optimization, yet its theoretical behavior under heavy-tailed noise is poorly understood.<n>We rigorously investigate whether SGD, can provably succeed under such adverse conditions.
- Score: 6.111519084375339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic Gradient Descent (SGD) is a cornerstone of large-scale optimization, yet its theoretical behavior under heavy-tailed noise -- common in modern machine learning and reinforcement learning -- remains poorly understood. In this work, we rigorously investigate whether vanilla SGD, devoid of any adaptive modifications, can provably succeed under such adverse stochastic conditions. Assuming only that stochastic gradients have bounded $p$-th moments for some $p \in (1, 2]$, we establish sharp convergence guarantees for (projected) SGD across convex, strongly convex, and non-convex problem classes. In particular, we show that SGD achieves minimax optimal sample complexity under minimal assumptions in the convex and strongly convex regimes: $\mathcal{O}(\varepsilon^{-\frac{p}{p-1}})$ and $\mathcal{O}(\varepsilon^{-\frac{p}{2(p-1)}})$, respectively. For non-convex objectives under H\"older smoothness, we prove convergence to a stationary point with rate $\mathcal{O}(\varepsilon^{-\frac{2p}{p-1}})$, and complement this with a matching lower bound specific to SGD with arbitrary polynomial step-size schedules. Finally, we consider non-convex Mini-batch SGD under standard smoothness and bounded central moment assumptions, and show that it also achieves a comparable $\mathcal{O}(\varepsilon^{-\frac{2p}{p-1}})$ sample complexity with a potential improvement in the smoothness constant. These results challenge the prevailing view that heavy-tailed noise renders SGD ineffective, and establish vanilla SGD as a robust and theoretically principled baseline -- even in regimes where the variance is unbounded.
Related papers
- Convergence of Clipped-SGD for Convex $(L_0,L_1)$-Smooth Optimization with Heavy-Tailed Noise [60.17850744118546]
First-order methods with clipping, such as Clip-SGD, exhibit stronger convergence guarantees than SGD under the $(L_$1)$-smoothness assumption.<n>We establish the first high-probability convergence bounds for Clip-SGD applied to convex $(L_$1)$-smooth optimization with heavytailed noise.
arXiv Detail & Related papers (2025-05-27T07:23:42Z) - Sign Operator for Coping with Heavy-Tailed Noise in Non-Convex Optimization: High Probability Bounds Under $(L_0, L_1)$-Smoothness [74.18546828528298]
We show that SignSGD with Majority Voting can robustly work on the whole range of complexity with $kappakappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappa
arXiv Detail & Related papers (2025-02-11T19:54:11Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise [59.25598762373543]
We show that wetailed high-prob convergence guarantees of learning on streaming data in the presence of heavy-tailed noise.
We demonstrate analytically and that $ta$ can be used to the preferred choice of setting for a given problem.
arXiv Detail & Related papers (2023-10-28T18:53:41Z) - Empirical Risk Minimization with Shuffled SGD: A Primal-Dual Perspective
and Improved Bounds [12.699376765058137]
gradient descent (SGD) is perhaps the most prevalent optimization method in modern machine learning.
It is only very recently that SGD with sampling without replacement -- shuffled SGD -- has been analyzed.
We prove fine-grained complexity bounds that depend on the data matrix and are never worse than what is predicted by the existing bounds.
arXiv Detail & Related papers (2023-06-21T18:14:44Z) - On Convergence of Incremental Gradient for Non-Convex Smooth Functions [63.51187646914962]
In machine learning and network optimization, algorithms like shuffle SGD are popular due to minimizing the number of misses and good cache.
This paper delves into the convergence properties SGD algorithms with arbitrary data ordering.
arXiv Detail & Related papers (2023-05-30T17:47:27Z) - Lower Generalization Bounds for GD and SGD in Smooth Stochastic Convex
Optimization [9.019243171993553]
Training steps $T$ and step-size $eta$ might affect certify in smooth convex optimization (SCO) problems.
We first provide tight excess risk lower bounds for Gradient Descent (GD) and Gradient Descent (SGD)
Recent works show better rates can be attained but the improvement is reduced when training time is long.
arXiv Detail & Related papers (2023-03-19T20:24:33Z) - Towards Noise-adaptive, Problem-adaptive Stochastic Gradient Descent [7.176107039687231]
We design step-size schemes that make gradient descent (SGD) adaptive to (i) the noise.
We prove that $T$ iterations of SGD with Nesterov iterations can be near optimal.
Compared to other step-size schemes, we demonstrate the effectiveness of a novel novel exponential step-size scheme.
arXiv Detail & Related papers (2021-10-21T19:22:14Z) - Convergence Rates of Stochastic Gradient Descent under Infinite Noise
Variance [14.06947898164194]
Heavy tails emerge in gradient descent (SGD) in various scenarios.
We provide convergence guarantees for SGD under a state-dependent and heavy-tailed noise with a potentially infinite variance.
Our results indicate that even under heavy-tailed noise with infinite variance, SGD can converge to the global optimum.
arXiv Detail & Related papers (2021-02-20T13:45:11Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.