INTENTION: Inferring Tendencies of Humanoid Robot Motion Through Interactive Intuition and Grounded VLM
- URL: http://arxiv.org/abs/2508.04931v1
- Date: Wed, 06 Aug 2025 23:27:22 GMT
- Title: INTENTION: Inferring Tendencies of Humanoid Robot Motion Through Interactive Intuition and Grounded VLM
- Authors: Jin Wang, Weijie Wang, Boyuan Deng, Heng Zhang, Rui Dai, Nikos Tsagarakis,
- Abstract summary: In this work, we propose INTENTION, a novel framework enabling robots with learned interactive intuition and autonomous manipulation in diverse scenarios.<n>We introduce Memory Graph to record scenes from previous task interactions which embodies human-like understanding and decision-making about different tasks in real world.<n>Meanwhile, we design an Intuitive Perceptor that extracts physical relations and affordances from visual scenes.
- Score: 9.217332197059001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional control and planning for robotic manipulation heavily rely on precise physical models and predefined action sequences. While effective in structured environments, such approaches often fail in real-world scenarios due to modeling inaccuracies and struggle to generalize to novel tasks. In contrast, humans intuitively interact with their surroundings, demonstrating remarkable adaptability, making efficient decisions through implicit physical understanding. In this work, we propose INTENTION, a novel framework enabling robots with learned interactive intuition and autonomous manipulation in diverse scenarios, by integrating Vision-Language Models (VLMs) based scene reasoning with interaction-driven memory. We introduce Memory Graph to record scenes from previous task interactions which embodies human-like understanding and decision-making about different tasks in real world. Meanwhile, we design an Intuitive Perceptor that extracts physical relations and affordances from visual scenes. Together, these components empower robots to infer appropriate interaction behaviors in new scenes without relying on repetitive instructions. Videos: https://robo-intention.github.io
Related papers
- Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
We introduce an interactive robotic manipulation framework called Polaris.
Polaris integrates perception and interaction by utilizing GPT-4 alongside grounded vision models.
We propose a novel Synthetic-to-Real (Syn2Real) pose estimation pipeline.
arXiv Detail & Related papers (2024-08-15T06:40:38Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - Learning to Act from Actionless Videos through Dense Correspondences [87.1243107115642]
We present an approach to construct a video-based robot policy capable of reliably executing diverse tasks across different robots and environments.
Our method leverages images as a task-agnostic representation, encoding both the state and action information, and text as a general representation for specifying robot goals.
We demonstrate the efficacy of our approach in learning policies on table-top manipulation and navigation tasks.
arXiv Detail & Related papers (2023-10-12T17:59:23Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
We train a visual affordance model that estimates where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly enables the robot to perform many complex tasks.
We show the efficacy of our approach, which we call VRB, across 4 real world environments, over 10 different tasks, and 2 robotic platforms operating in the wild.
arXiv Detail & Related papers (2023-04-17T17:59:34Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
We develop a framework for extracting agent-agnostic action representations from human videos.
Our framework is based on predicting plausible human hand trajectories.
We deploy the trained model zero-shot for physical robot manipulation tasks.
arXiv Detail & Related papers (2023-02-03T21:39:52Z) - Ditto in the House: Building Articulation Models of Indoor Scenes
through Interactive Perception [31.009703947432026]
This work explores building articulation models of indoor scenes through a robot's purposeful interactions.
We introduce an interactive perception approach to this task.
We demonstrate the effectiveness of our approach in both simulation and real-world scenes.
arXiv Detail & Related papers (2023-02-02T18:22:00Z) - Synthesizing Physical Character-Scene Interactions [64.26035523518846]
It is necessary to synthesize such interactions between virtual characters and their surroundings.
We present a system that uses adversarial imitation learning and reinforcement learning to train physically-simulated characters.
Our approach takes physics-based character motion generation a step closer to broad applicability.
arXiv Detail & Related papers (2023-02-02T05:21:32Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.