Learning from Similarity-Confidence and Confidence-Difference
- URL: http://arxiv.org/abs/2508.05108v1
- Date: Thu, 07 Aug 2025 07:42:59 GMT
- Title: Learning from Similarity-Confidence and Confidence-Difference
- Authors: Tomoya Tate, Kosuke Sugiyama, Masato Uchida,
- Abstract summary: We propose a novel Weakly Supervised Learning (WSL) framework that leverages complementary weak supervision signals from multiple perspectives.<n>Specifically, we introduce SconfConfDiff Classification, a method that integrates two distinct forms of weaklabels.<n>We prove that both estimators achieve optimal convergence rates with respect to estimation error bounds.
- Score: 0.24578723416255752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practical machine learning applications, it is often challenging to assign accurate labels to data, and increasing the number of labeled instances is often limited. In such cases, Weakly Supervised Learning (WSL), which enables training with incomplete or imprecise supervision, provides a practical and effective solution. However, most existing WSL methods focus on leveraging a single type of weak supervision. In this paper, we propose a novel WSL framework that leverages complementary weak supervision signals from multiple relational perspectives, which can be especially valuable when labeled data is limited. Specifically, we introduce SconfConfDiff Classification, a method that integrates two distinct forms of weaklabels: similarity-confidence and confidence-difference, which are assigned to unlabeled data pairs. To implement this method, we derive two types of unbiased risk estimators for classification: one based on a convex combination of existing estimators, and another newly designed by modeling the interaction between two weak labels. We prove that both estimators achieve optimal convergence rates with respect to estimation error bounds. Furthermore, we introduce a risk correction approach to mitigate overfitting caused by negative empirical risk, and provide theoretical analysis on the robustness of the proposed method against inaccurate class prior probability and label noise. Experimental results demonstrate that the proposed method consistently outperforms existing baselines across a variety of settings.
Related papers
- An Unbiased Risk Estimator for Partial Label Learning with Augmented Classes [46.663081214928226]
We propose an unbiased risk estimator with theoretical guarantees for PLLAC.
We provide a theoretical analysis of the estimation error bound of PLLAC.
Experiments on benchmark, UCI and real-world datasets demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-09-29T07:36:16Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
Complementary-label learning is a weakly supervised learning problem.
We propose a consistent approach that does not rely on the uniform distribution assumption.
We find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems.
arXiv Detail & Related papers (2023-11-27T02:59:17Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
We propose a worst-case consistency regularization technique for semi-supervised learning (SSL)
We present a generalization bound for SSL consisting of the empirical loss terms observed on labeled and unlabeled training data separately.
Motivated by this bound, we derive an SSL objective that minimizes the largest inconsistency between an original unlabeled sample and its multiple augmented variants.
arXiv Detail & Related papers (2022-09-26T12:04:49Z) - Learning from Similarity-Confidence Data [94.94650350944377]
We investigate a novel weakly supervised learning problem of learning from similarity-confidence (Sconf) data.
We propose an unbiased estimator of the classification risk that can be calculated from only Sconf data and show that the estimation error bound achieves the optimal convergence rate.
arXiv Detail & Related papers (2021-02-13T07:31:16Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.