VFlowOpt: A Token Pruning Framework for LMMs with Visual Information Flow-Guided Optimization
- URL: http://arxiv.org/abs/2508.05211v1
- Date: Thu, 07 Aug 2025 09:47:21 GMT
- Title: VFlowOpt: A Token Pruning Framework for LMMs with Visual Information Flow-Guided Optimization
- Authors: Sihan Yang, Runsen Xu, Chenhang Cui, Tai Wang, Dahua Lin, Jiangmiao Pang,
- Abstract summary: Large Multimodal Models (LMMs) excel in visual-language tasks by leveraging numerous visual tokens for fine-grained visual information.<n>Previous research aimed at reducing visual tokens during inference typically leverages importance maps derived from attention scores among vision-only tokens or vision-language tokens to prune tokens across one or multiple pruning stages.<n>We propose VFlowOpt, a token pruning framework that introduces an importance map derivation process and a progressive pruning module with a recycling mechanism.<n> Experiments demonstrate that VFlowOpt can prune 90% of visual tokens while maintaining comparable performance, leading to an 89% reduction in KV-Cache memory and 3.8
- Score: 49.5501769221435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Multimodal Models (LMMs) excel in visual-language tasks by leveraging numerous visual tokens for fine-grained visual information, but this token redundancy results in significant computational costs. Previous research aimed at reducing visual tokens during inference typically leverages importance maps derived from attention scores among vision-only tokens or vision-language tokens to prune tokens across one or multiple pruning stages. Despite this progress, pruning frameworks and strategies remain simplistic and insufficiently explored, often resulting in substantial performance degradation. In this paper, we propose VFlowOpt, a token pruning framework that introduces an importance map derivation process and a progressive pruning module with a recycling mechanism. The hyperparameters of its pruning strategy are further optimized by a visual information flow-guided method. Specifically, we compute an importance map for image tokens based on their attention-derived context relevance and patch-level information entropy. We then decide which tokens to retain or prune and aggregate the pruned ones as recycled tokens to avoid potential information loss. Finally, we apply a visual information flow-guided method that regards the last token in the LMM as the most representative signal of text-visual interactions. This method minimizes the discrepancy between token representations in LMMs with and without pruning, thereby enabling superior pruning strategies tailored to different LMMs. Experiments demonstrate that VFlowOpt can prune 90% of visual tokens while maintaining comparable performance, leading to an 89% reduction in KV-Cache memory and 3.8 times faster inference.
Related papers
- A Glimpse to Compress: Dynamic Visual Token Pruning for Large Vision-Language Models [94.49953824684853]
We introduce a dynamic pruning framework, GlimpsePrune, inspired by human cognition.<n>It takes a data-driven ''glimpse'' and prunes irrelevant visual tokens in a single forward pass before answer generation.<n>An enhanced GlimpsePrune+ achieves 110% of the baseline performance while maintaining a similarly high pruning rate.
arXiv Detail & Related papers (2025-08-03T02:15:43Z) - Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics.<n>Previous efforts have explored visual token reduction either prior to or within the large language models (LLMs)<n>We introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention.
arXiv Detail & Related papers (2025-06-27T14:55:40Z) - ToDRE: Visual Token Pruning via Diversity and Task Awareness for Efficient Large Vision-Language Models [59.47738955960352]
ToDRE is a two-stage and training-free token compression framework.<n>It achieves superior performance by pruning tokens based on token Diversity and token-task RElevance.
arXiv Detail & Related papers (2025-05-24T15:47:49Z) - TopV: Compatible Token Pruning with Inference Time Optimization for Fast and Low-Memory Multimodal Vision Language Model [56.43860351559185]
We introduce textbfTopV, a compatible textbfTOken textbfPruning with inference Time Optimization for fast and low-memory textbfVLM.<n>Our framework incorporates a visual-aware cost function to measure the importance of each source visual token, enabling effective pruning of low-importance tokens.
arXiv Detail & Related papers (2025-03-24T01:47:26Z) - A Stitch in Time Saves Nine: Small VLM is a Precise Guidance for Accelerating Large VLMs [65.00970402080351]
A promising approach to accelerating large vision-language models (VLMs) is using partial information, such as attention maps from specific layers, to assess token importance and prune less essential tokens.<n>Our study reveals three key insights: (i) Partial attention information is insufficient for accurately identifying critical visual tokens, resulting in suboptimal performance, especially at low token retention ratios; (ii) Global attention information, such as the attention map aggregated across all layers, more effectively preserves essential tokens and maintains comparable performance under aggressive pruning; and (iii) The global attention map aggregated from a small VLM closely resembles that of a large VLM,
arXiv Detail & Related papers (2024-12-04T13:56:44Z) - Beyond Text-Visual Attention: Exploiting Visual Cues for Effective Token Pruning in VLMs [34.3615740255575]
Large vision-language models (LVLMs) generally contain significantly more visual tokens than their textual counterparts.<n>We propose VisPruner, a plug-and-play method that utilizes visual cues for more effective token pruning in LVLMs.<n>Our results show that VisPruner can reduce the FLOPs of LLaVA-1.5-7B by 91% and inference latency by 75%, while maintaining comparable performance.
arXiv Detail & Related papers (2024-12-02T18:57:40Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.<n>To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.<n>We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
Large Multimodal Models (LMMs) have shown significant visual reasoning capabilities by connecting a visual encoder and a large language model.
Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which further increases the number of visual tokens significantly.
We propose PruMerge, a novel adaptive visual token reduction strategy that significantly reduces the number of visual tokens without compromising the performance of LMMs.
arXiv Detail & Related papers (2024-03-22T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.