Task complexity shapes internal representations and robustness in neural networks
- URL: http://arxiv.org/abs/2508.05463v1
- Date: Thu, 07 Aug 2025 15:02:39 GMT
- Title: Task complexity shapes internal representations and robustness in neural networks
- Authors: Robert Jankowski, Filippo Radicchi, M. Ángeles Serrano, Marián Boguñá, Santo Fortunato,
- Abstract summary: We show that binarizing weights in hardtask models collapses accuracy to chance, whereas easy-task models remain robust.<n>We also find that pruning low-magnitude edges in binarized hard-task models reveals a sharp phase-transition in performance.<n>These phenomena define a model- and modalityagnostic measure of task complexity.
- Score: 0.504868948270058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks excel across a wide range of tasks, yet remain black boxes. In particular, how their internal representations are shaped by the complexity of the input data and the problems they solve remains obscure. In this work, we introduce a suite of five data-agnostic probes-pruning, binarization, noise injection, sign flipping, and bipartite network randomization-to quantify how task difficulty influences the topology and robustness of representations in multilayer perceptrons (MLPs). MLPs are represented as signed, weighted bipartite graphs from a network science perspective. We contrast easy and hard classification tasks on the MNIST and Fashion-MNIST datasets. We show that binarizing weights in hard-task models collapses accuracy to chance, whereas easy-task models remain robust. We also find that pruning low-magnitude edges in binarized hard-task models reveals a sharp phase-transition in performance. Moreover, moderate noise injection can enhance accuracy, resembling a stochastic-resonance effect linked to optimal sign flips of small-magnitude weights. Finally, preserving only the sign structure-instead of precise weight magnitudes-through bipartite network randomizations suffices to maintain high accuracy. These phenomena define a model- and modality-agnostic measure of task complexity: the performance gap between full-precision and binarized or shuffled neural network performance. Our findings highlight the crucial role of signed bipartite topology in learned representations and suggest practical strategies for model compression and interpretability that align with task complexity.
Related papers
- Understanding Generalization, Robustness, and Interpretability in Low-Capacity Neural Networks [0.0]
We introduce a framework to investigate capacity, sparsity, and robustness in low-capacity networks.<n>We show that trained networks are robust to extreme magnitude pruning (up to 95% sparsity)<n>This work provides a clear, empirical demonstration of the trade-offs governing simple neural networks.
arXiv Detail & Related papers (2025-07-22T06:43:03Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Human-Guided Complexity-Controlled Abstractions [30.38996929410352]
We train neural models to generate a spectrum of discrete representations and control the complexity.
We show that tuning the representation to a task-appropriate complexity level supports the highest finetuning performance.
Our results indicate a promising direction for rapid model finetuning by leveraging human insight.
arXiv Detail & Related papers (2023-10-26T16:45:34Z) - Quantifying lottery tickets under label noise: accuracy, calibration,
and complexity [6.232071870655069]
Pruning deep neural networks is a widely used strategy to alleviate the computational burden in machine learning.
We use the sparse double descent approach to identify univocally and characterise pruned models associated with classification tasks.
arXiv Detail & Related papers (2023-06-21T11:35:59Z) - Establishment of Neural Networks Robust to Label Noise [0.0]
In this paper, we have examined the fundamental concept underlying related label noise approaches.
A transition matrix estimator has been created, and its effectiveness against the actual transition matrix has been demonstrated.
We are not efficiently able to demonstrate the influence of the transition matrix noise correction on robustness enhancements due to our inability to correctly tune the complex convolutional neural network model.
arXiv Detail & Related papers (2022-11-28T13:07:23Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.