MagicHOI: Leveraging 3D Priors for Accurate Hand-object Reconstruction from Short Monocular Video Clips
- URL: http://arxiv.org/abs/2508.05506v1
- Date: Thu, 07 Aug 2025 15:37:35 GMT
- Title: MagicHOI: Leveraging 3D Priors for Accurate Hand-object Reconstruction from Short Monocular Video Clips
- Authors: Shibo Wang, Haonan He, Maria Parelli, Christoph Gebhardt, Zicong Fan, Jie Song,
- Abstract summary: We present MagicHOI, a method for reconstructing hands and objects from short monocular interaction videos.<n>We show that MagicHOI significantly outperforms existing state-of-the-art hand-object reconstruction methods.
- Score: 10.583581000388305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most RGB-based hand-object reconstruction methods rely on object templates, while template-free methods typically assume full object visibility. This assumption often breaks in real-world settings, where fixed camera viewpoints and static grips leave parts of the object unobserved, resulting in implausible reconstructions. To overcome this, we present MagicHOI, a method for reconstructing hands and objects from short monocular interaction videos, even under limited viewpoint variation. Our key insight is that, despite the scarcity of paired 3D hand-object data, large-scale novel view synthesis diffusion models offer rich object supervision. This supervision serves as a prior to regularize unseen object regions during hand interactions. Leveraging this insight, we integrate a novel view synthesis model into our hand-object reconstruction framework. We further align hand to object by incorporating visible contact constraints. Our results demonstrate that MagicHOI significantly outperforms existing state-of-the-art hand-object reconstruction methods. We also show that novel view synthesis diffusion priors effectively regularize unseen object regions, enhancing 3D hand-object reconstruction.
Related papers
- EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild [79.71523320368388]
Our work aims to reconstruct hand-object interactions from a single-view image.<n>We first design a novel pipeline to estimate the underlying hand pose and object shape.<n>With the initial reconstruction, we employ a prior-guided optimization scheme.
arXiv Detail & Related papers (2024-11-21T16:33:35Z) - NCRF: Neural Contact Radiance Fields for Free-Viewpoint Rendering of
Hand-Object Interaction [19.957593804898064]
We present a novel free-point rendering framework, Neural Contact Radiance Field ( NCRF), to reconstruct hand-object interactions from a sparse set of videos.
We jointly learn these key components where they mutually help and regularize each other with visual and geometric constraints.
Our approach outperforms the current state-of-the-art in terms of both rendering quality and pose estimation accuracy.
arXiv Detail & Related papers (2024-02-08T10:09:12Z) - HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and
Objects from Video [70.11702620562889]
HOLD -- the first category-agnostic method that reconstructs an articulated hand and object jointly from a monocular interaction video.
We develop a compositional articulated implicit model that can disentangled 3D hand and object from 2D images.
Our method does not rely on 3D hand-object annotations while outperforming fully-supervised baselines in both in-the-lab and challenging in-the-wild settings.
arXiv Detail & Related papers (2023-11-30T10:50:35Z) - MOHO: Learning Single-view Hand-held Object Reconstruction with
Multi-view Occlusion-Aware Supervision [75.38953287579616]
We present a novel framework to exploit Multi-view Occlusion-aware supervision from hand-object videos for Hand-held Object reconstruction.
We tackle two predominant challenges in such setting: hand-induced occlusion and object's self-occlusion.
Experiments on HO3D and DexYCB datasets demonstrate 2D-supervised MOHO gains superior results against 3D-supervised methods by a large margin.
arXiv Detail & Related papers (2023-10-18T03:57:06Z) - Reconstructing Hand-Held Objects from Monocular Video [95.06750686508315]
This paper presents an approach that reconstructs a hand-held object from a monocular video.
In contrast to many recent methods that directly predict object geometry by a trained network, the proposed approach does not require any learned prior to the object.
arXiv Detail & Related papers (2022-11-30T09:14:58Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
Our work aims to reconstruct hand-held objects given a single RGB image.
In contrast to prior works that typically assume known 3D templates and reduce the problem to 3D pose estimation, our work reconstructs generic hand-held object without knowing their 3D templates.
arXiv Detail & Related papers (2022-04-14T17:59:02Z) - Joint Hand-object 3D Reconstruction from a Single Image with
Cross-branch Feature Fusion [78.98074380040838]
We propose to consider hand and object jointly in feature space and explore the reciprocity of the two branches.
We employ an auxiliary depth estimation module to augment the input RGB image with the estimated depth map.
Our approach significantly outperforms existing approaches in terms of the reconstruction accuracy of objects.
arXiv Detail & Related papers (2020-06-28T09:50:25Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
We present a method to leverage photometric consistency across time when annotations are only available for a sparse subset of frames in a video.
Our model is trained end-to-end on color images to jointly reconstruct hands and objects in 3D by inferring their poses.
We achieve state-of-the-art results on 3D hand-object reconstruction benchmarks and demonstrate that our approach allows us to improve the pose estimation accuracy.
arXiv Detail & Related papers (2020-04-28T12:03:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.