論文の概要: Domain Adaptation: Learning Bounds and Algorithms
- arxiv url: http://arxiv.org/abs/0902.3430v3
- Date: Thu, 30 Nov 2023 22:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-12-04 19:26:21.562455
- Title: Domain Adaptation: Learning Bounds and Algorithms
- Title(参考訳): ドメイン適応: 境界とアルゴリズムを学習する
- Authors: Yishay Mansour, Mehryar Mohri, Afshin Rostamizadeh
- Abstract要約: 本稿では,任意の損失関数を持つ適応問題に適した分布距離,差分距離を新たに導入する。
広い損失関数族に対する領域適応のための新しい一般化境界を導出する。
また、正規化に基づくアルゴリズムの大規模クラスに対する新しい適応境界も提示する。
- 参考スコア(独自算出の注目度): 80.85426994513541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the general problem of domain adaptation which arises in
a variety of applications where the distribution of the labeled sample
available somewhat differs from that of the test data. Building on previous
work by Ben-David et al. (2007), we introduce a novel distance between
distributions, discrepancy distance, that is tailored to adaptation problems
with arbitrary loss functions. We give Rademacher complexity bounds for
estimating the discrepancy distance from finite samples for different loss
functions. Using this distance, we derive novel generalization bounds for
domain adaptation for a wide family of loss functions. We also present a series
of novel adaptation bounds for large classes of regularization-based
algorithms, including support vector machines and kernel ridge regression based
on the empirical discrepancy. This motivates our analysis of the problem of
minimizing the empirical discrepancy for various loss functions for which we
also give novel algorithms. We report the results of preliminary experiments
that demonstrate the benefits of our discrepancy minimization algorithms for
domain adaptation.
- Abstract(参考訳): 本稿では,ラベル付きサンプルの分布がテストデータと多少異なる様々なアプリケーションにおいて生じる,ドメイン適応の一般的な問題について述べる。
ben-david et al. (2007) による先行研究に基づき, 任意の損失関数を持つ適応問題に適応した, 分布間の新しい距離である不一致距離を導入する。
有限標本からの損失関数の差を推定するためにラデマッハの複雑性境界を与える。
この距離を用いて、広い損失関数族に対する領域適応のための新しい一般化境界を導出する。
また,経験的差分に基づくサポートベクトルマシンやカーネルリッジ回帰を含む,正規化に基づくアルゴリズムの大規模クラスに対する新しい適応境界も提示する。
これは,新しいアルゴリズムを与える様々な損失関数に対する経験的不一致を最小化する問題の解析を動機づける。
ドメイン適応のための不一致最小化アルゴリズムの利点を実証する予備実験の結果を報告する。
関連論文リスト
- Domain Adaptation and Entanglement: an Optimal Transport Perspective [86.24617989187988]
現在の機械学習システムは分散シフト(DS)に直面して脆弱であり、そこでは、システムがテストされる対象の分布は、システムのトレーニングに使用されるソースの分布とは異なる。
ディープニューラルネットワークでは、教師なしドメイン適応(UDA)のための一般的なフレームワークがドメインマッチングである。
本稿では,UDA問題を解析する最適な輸送量に基づく新しい境界を導出する。
論文 参考訳(メタデータ) (2025-03-11T08:10:03Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
Amortized Posterior Smplingは、逆問題における効率的な後方サンプリングのための新しい変分推論手法である。
本手法は,拡散モデルにより暗黙的に定義された変動分布と後続分布とのばらつきを最小限に抑えるために条件付き流れモデルを訓練する。
既存の手法とは異なり、我々のアプローチは教師なしであり、ペア化されたトレーニングデータを必要としておらず、ユークリッドと非ユークリッドの両方のドメインに適用できる。
論文 参考訳(メタデータ) (2024-07-25T09:53:12Z) - Function Extrapolation with Neural Networks and Its Application for Manifolds [1.4579344926652844]
我々は、関数の事前知識を組み込むためにニューラルネットワークを訓練する。
問題を慎重に解析することにより、外挿領域上の誤差の上限を求める。
論文 参考訳(メタデータ) (2024-05-17T06:15:26Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - Error-Aware Spatial Ensembles for Video Frame Interpolation [50.63021118973639]
近年,ビデオフレーム(VFI)アルゴリズムは,データ駆動アルゴリズムと実装の両面で前例のない進歩により,大幅に改善されている。
近年の研究では、挑戦的なVFIシナリオに対処する手段として、高度な動き推定や新しいワープ手法が導入されている。
本研究は、光フローとIEの相関関係を詳細に検討することにより、中間フレームを異なるIEレベルに対応する異なる領域に分割する新しいエラー予測指標を提案する。
論文 参考訳(メタデータ) (2022-07-25T16:15:38Z) - Domain Generalization via Domain-based Covariance Minimization [4.414778226415752]
本稿では,領域間の条件分布の差を最小限に抑えるために,複数の領域に対する新しい分散測定法を提案する。
小規模なデータセットでは、未確認のテストデータセットよりも優れた一般化性能を示す、より良い定量的結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T19:30:15Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
教師なしのドメイン適応は、トレーニング中、ターゲットドメイン内のラベルなしデータにアクセス可能な、多くの機械学習アプリケーションで使用されている。
領域適応のための新しい一般化法を導出し、f-発散体の変分的特徴に基づく分布間の相違性の新しい尺度を利用する。
論文 参考訳(メタデータ) (2021-06-21T18:21:09Z) - Discrepancy-Based Active Learning for Domain Adaptation [7.283533791778357]
この論文の目的は、ドメインシフトの仮定の下でドメイン適応につながるアクティブな学習戦略を設計することである。
一般損失関数に対するラデマッハ平均と局所偏差の観点から,このようなアクティブ学習戦略の境界を導出する。
大規模データセットの場合に対処するために,アルゴリズムの改良版を提供する。
論文 参考訳(メタデータ) (2021-03-05T15:36:48Z) - Adversarial Weighting for Domain Adaptation in Regression [4.34858896385326]
制御ドメイン適応の文脈において、回帰タスクを処理するための新しいインスタンスベースのアプローチを提案する。
本研究では,情報源重み付け方式とタスクを1つのフィードフォワード勾配下で学習する逆ネットワークアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-06-15T09:44:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。