Identification Via Quantum Channels
- URL: http://arxiv.org/abs/1212.0494v2
- Date: Sat, 17 Feb 2024 22:57:35 GMT
- Title: Identification Via Quantum Channels
- Authors: Andreas Winter
- Abstract summary: We review the development of the quantum version of Ahlswede and Dueck's theory of identification via channels.
We know at least two different concepts of identification of classical information via quantum channels, and three different identification capacities for quantum information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We review the development of the quantum version of Ahlswede and Dueck's
theory of identification via channels. As is often the case in quantum
probability, there is not just one but several quantizations: we know at least
two different concepts of identification of classical information via quantum
channels, and three different identification capacities for quantum
information. In the present summary overview we concentrate on conceptual
points and open problems, referring the reader to the small set of original
articles for details.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Zero-entropy encoders and simultaneous decoders in identification via quantum channels [49.126395046088014]
We show that all four combinations (pure/mixed encoder, simultaneous/general decoder) have a double-exponentially growing code size.
We show that the simultaneous identification capacity of a quantum channel equals the simultaneous identification capacity with pure state encodings.
arXiv Detail & Related papers (2024-02-14T11:59:23Z) - A note on Wigner-Yanase skew information-based uncertainty of quantum
channels [11.738923802183306]
variance of quantum channels involving a mixed state gives a hybrid of classical and quantum uncertainties.
We seek certain decomposition of variance into classical and quantum parts in terms of the Wigner-Yanase skew information.
arXiv Detail & Related papers (2023-12-20T06:41:02Z) - Quantum Partial Information Decomposition [0.0]
Partial Information Decomposition (PID) takes one step beyond Shannon's theory in decomposing the information two variables $A,B$ into distinct parts.
We show how these concepts can be defined in a quantum setting.
arXiv Detail & Related papers (2023-08-08T18:06:37Z) - Quantum information and beyond -- with quantum candies [0.0]
We investigate, extend, and greatly expand here "quantum candies" (invented by Jacobs)
"quantum" candies describe some basic concepts in quantum information, including quantum bits, complementarity, the no-cloning principle, and entanglement.
These demonstrations are done in an approachable manner, that can be explained to high-school students, without using the hard-to-grasp concept of superpositions and its mathematics.
arXiv Detail & Related papers (2021-09-30T16:05:33Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Candies and Quantum Cryptography [0.0]
We investigate, extend, and much expand here "quantum candies" (invented by Jacobs), a pedagogical model for intuitively describing some basic concepts in quantum information.
We explicitly demonstrate various additional quantum cryptography protocols using quantum candies in an approachable manner.
arXiv Detail & Related papers (2020-11-03T21:01:08Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum key distribution based on the quantum eraser [0.0]
Quantum information and quantum foundations are becoming popular topics for advanced undergraduate courses.
We show that the quantum eraser, usually used to study the duality between wave and particle properties, can also serve as a generic platform for quantum key distribution.
arXiv Detail & Related papers (2019-07-07T10:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.