Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem
- URL: http://arxiv.org/abs/2405.07226v1
- Date: Sun, 12 May 2024 09:05:13 GMT
- Title: Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem
- Authors: Xinbiao Wang, Yuxuan Du, Kecheng Liu, Yong Luo, Bo Du, Dacheng Tao,
- Abstract summary: The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
- Score: 70.42372213666553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The No-Free-Lunch (NFL) theorem, which quantifies problem- and data-independent generalization errors regardless of the optimization process, provides a foundational framework for comprehending diverse learning protocols' potential. Despite its significance, the establishment of the NFL theorem for quantum machine learning models remains largely unexplored, thereby overlooking broader insights into the fundamental relationship between quantum and classical learning protocols. To address this gap, we categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable and establish their NFL theorem. The exploited protocols, namely Classical Learning Protocols (CLC-LPs), Restricted Quantum Learning Protocols (ReQu-LPs), and Quantum Learning Protocols (Qu-LPs), offer varying levels of access to quantum resources. Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs, contingent upon the orthogonality of quantum states and the diagonality of observables. We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states, a distinctive physical feature inherent in quantum mechanics. Our findings not only deepen our understanding of quantum learning protocols' capabilities but also provide practical insights for the development of advanced quantum learning algorithms.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Information-theoretic generalization bounds for learning from quantum data [5.0739329301140845]
We propose a general mathematical formalism for describing quantum learning by training on classical-quantum data.
We prove bounds on the expected generalization error of a quantum learner in terms of classical and quantum information-theoretic quantities.
Our work lays a foundation for a unifying quantum information-theoretic perspective on quantum learning.
arXiv Detail & Related papers (2023-11-09T17:21:38Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Unclonability and Quantum Cryptanalysis: From Foundations to
Applications [0.0]
Unclonability is a fundamental concept in quantum theory and one of the main non-classical properties of quantum information.
We introduce new notions of unclonability in the quantum world, namely quantum physical unclonability.
We discuss several applications of this new type of unclonability as a cryptographic resource for designing provably secure quantum protocols.
arXiv Detail & Related papers (2022-10-31T17:57:09Z) - Quantum variational learning for entanglement witnessing [0.0]
This work focuses on the potential implementation of quantum algorithms allowing to properly classify quantum states defined over a single register of $n$ qubits.
We exploit the notion of "entanglement witness", i.e., an operator whose expectation values allow to identify certain specific states as entangled.
We made use of Quantum Neural Networks (QNNs) in order to successfully learn how to reproduce the action of an entanglement witness.
arXiv Detail & Related papers (2022-05-20T20:14:28Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Probably approximately correct quantum source coding [0.0]
Holevo's and Nayak's bounds give an estimate of the amount of classical information that can be stored in a quantum state.
We show two novel applications in quantum learning theory and delegated quantum computation with a purely classical client.
arXiv Detail & Related papers (2021-12-13T17:57:30Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.