Generative Adversarial Trainer: Defense to Adversarial Perturbations
with GAN
- URL: http://arxiv.org/abs/1705.03387v3
- Date: Tue, 4 Jul 2023 06:49:26 GMT
- Title: Generative Adversarial Trainer: Defense to Adversarial Perturbations
with GAN
- Authors: Hyeungill Lee, Sungyeob Han, Jungwoo Lee
- Abstract summary: We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network.
The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image.
Our adversarial training framework efficiently reduces overfitting and outperforms other regularization methods such as Dropout.
- Score: 13.561553183983774
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a novel technique to make neural network robust to adversarial
examples using a generative adversarial network. We alternately train both
classifier and generator networks. The generator network generates an
adversarial perturbation that can easily fool the classifier network by using a
gradient of each image. Simultaneously, the classifier network is trained to
classify correctly both original and adversarial images generated by the
generator. These procedures help the classifier network to become more robust
to adversarial perturbations. Furthermore, our adversarial training framework
efficiently reduces overfitting and outperforms other regularization methods
such as Dropout. We applied our method to supervised learning for CIFAR
datasets, and experimantal results show that our method significantly lowers
the generalization error of the network. To the best of our knowledge, this is
the first method which uses GAN to improve supervised learning.
Related papers
- Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Being Friends Instead of Adversaries: Deep Networks Learn from Data
Simplified by Other Networks [23.886422706697882]
A different idea has been recently proposed, named Friendly Training, which consists in altering the input data by adding an automatically estimated perturbation.
We revisit and extend this idea inspired by the effectiveness of neural generators in the context of Adversarial Machine Learning.
We propose an auxiliary multi-layer network that is responsible of altering the input data to make them easier to be handled by the classifier.
arXiv Detail & Related papers (2021-12-18T16:59:35Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Defensive Tensorization [113.96183766922393]
We propose tensor defensiveization, an adversarial defence technique that leverages a latent high-order factorization of the network.
We empirically demonstrate the effectiveness of our approach on standard image classification benchmarks.
We validate the versatility of our approach across domains and low-precision architectures by considering an audio task and binary networks.
arXiv Detail & Related papers (2021-10-26T17:00:16Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
Studies show that neural networks are susceptible to adversarial attacks.
This exposes a potential threat to neural network-based intelligent systems.
We propose a method for counteracting adversarial perturbations to improve adversarial robustness.
arXiv Detail & Related papers (2021-03-08T06:27:24Z) - Regularized Generative Adversarial Network [0.0]
We propose a framework for generating samples from a probability distribution that differs from the probability distribution of the training set.
We refer to this new model as regularized generative adversarial network (RegGAN)
arXiv Detail & Related papers (2021-02-09T01:13:36Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - The Hidden Tasks of Generative Adversarial Networks: An Alternative
Perspective on GAN Training [1.964574177805823]
We present an alternative perspective on the training of generative adversarial networks (GANs)
We show that the training step for a GAN generator decomposes into two implicit sub-problems.
We experimentally validate our main theoretical result and discuss implications for alternative training methods.
arXiv Detail & Related papers (2021-01-28T08:17:29Z) - REGroup: Rank-aggregating Ensemble of Generative Classifiers for Robust
Predictions [6.0162772063289784]
Defense strategies that adopt adversarial training or random input transformations typically require retraining or fine-tuning the model to achieve reasonable performance.
We find that we can learn a generative classifier by statistically characterizing the neural response of an intermediate layer to clean training samples.
Our proposed approach uses a subset of the clean training data and a pre-trained model, and yet is agnostic to network architectures or the adversarial attack generation method.
arXiv Detail & Related papers (2020-06-18T17:07:19Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
We show a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network.
We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly gradient descent indeed this principle.
arXiv Detail & Related papers (2020-05-20T16:56:08Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
We train networks to form coarse impressions based on the information in higher bit planes, and use the lower bit planes only to refine their prediction.
We demonstrate that, by imposing consistency on the representations learned across differently quantized images, the adversarial robustness of networks improves significantly.
arXiv Detail & Related papers (2020-04-01T09:31:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.