The Hidden Tasks of Generative Adversarial Networks: An Alternative
Perspective on GAN Training
- URL: http://arxiv.org/abs/2101.11863v2
- Date: Fri, 29 Jan 2021 12:47:36 GMT
- Title: The Hidden Tasks of Generative Adversarial Networks: An Alternative
Perspective on GAN Training
- Authors: Romann M. Weber
- Abstract summary: We present an alternative perspective on the training of generative adversarial networks (GANs)
We show that the training step for a GAN generator decomposes into two implicit sub-problems.
We experimentally validate our main theoretical result and discuss implications for alternative training methods.
- Score: 1.964574177805823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an alternative perspective on the training of generative
adversarial networks (GANs), showing that the training step for a GAN generator
decomposes into two implicit sub-problems. In the first, the discriminator
provides new target data to the generator in the form of "inverse examples"
produced by approximately inverting classifier labels. In the second, these
examples are used as targets to update the generator via least-squares
regression, regardless of the main loss specified to train the network. We
experimentally validate our main theoretical result and discuss implications
for alternative training methods that are made possible by making these
sub-problems explicit. We also introduce a simple representation of inductive
bias in networks, which we apply to describing the generator's output relative
to its regression targets.
Related papers
- Generator Born from Classifier [66.56001246096002]
We aim to reconstruct an image generator, without relying on any data samples.
We propose a novel learning paradigm, in which the generator is trained to ensure that the convergence conditions of the network parameters are satisfied.
arXiv Detail & Related papers (2023-12-05T03:41:17Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Dual Student Networks for Data-Free Model Stealing [79.67498803845059]
Two main challenges are estimating gradients of the target model without access to its parameters, and generating a diverse set of training samples.
We propose a Dual Student method where two students are symmetrically trained in order to provide the generator a criterion to generate samples that the two students disagree on.
We show that our new optimization framework provides more accurate gradient estimation of the target model and better accuracies on benchmark classification datasets.
arXiv Detail & Related papers (2023-09-18T18:11:31Z) - Stochastic Deep Networks with Linear Competing Units for Model-Agnostic
Meta-Learning [4.97235247328373]
This work addresses meta-learning (ML) by considering deep networks with local winner-takes-all (LWTA) activations.
This type of network units results in sparse representations from each model layer, as the units are organized into blocks where only one unit generates a non-zero output.
Our approach produces state-of-the-art predictive accuracy on few-shot image classification and regression experiments, as well as reduced predictive error on an active learning setting.
arXiv Detail & Related papers (2022-08-02T16:19:54Z) - Self-supervised GANs with Label Augmentation [43.78253518292111]
We propose a novel self-supervised GANs framework with label augmentation, i.e., augmenting the GAN labels (real or fake) with the self-supervised pseudo-labels.
We demonstrate that the proposed method significantly outperforms competitive baselines on both generative modeling and representation learning.
arXiv Detail & Related papers (2021-06-16T07:58:00Z) - Training Generative Adversarial Networks in One Stage [58.983325666852856]
We introduce a general training scheme that enables training GANs efficiently in only one stage.
We show that the proposed method is readily applicable to other adversarial-training scenarios, such as data-free knowledge distillation.
arXiv Detail & Related papers (2021-02-28T09:03:39Z) - Regularized Generative Adversarial Network [0.0]
We propose a framework for generating samples from a probability distribution that differs from the probability distribution of the training set.
We refer to this new model as regularized generative adversarial network (RegGAN)
arXiv Detail & Related papers (2021-02-09T01:13:36Z) - Mode Penalty Generative Adversarial Network with adapted Auto-encoder [0.15229257192293197]
We propose a mode penalty GAN combined with pre-trained auto encoder for explicit representation of generated and real data samples in encoded space.
We demonstrate that applying the proposed method to GANs helps generator's optimization becoming more stable and having faster convergence through experimental evaluations.
arXiv Detail & Related papers (2020-11-16T03:39:53Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
We introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGAN's discriminator.
We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
arXiv Detail & Related papers (2020-04-05T01:50:16Z) - Generative Adversarial Trainer: Defense to Adversarial Perturbations
with GAN [13.561553183983774]
We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network.
The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image.
Our adversarial training framework efficiently reduces overfitting and outperforms other regularization methods such as Dropout.
arXiv Detail & Related papers (2017-05-09T15:30:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.