Classical Homomorphic Encryption for Quantum Circuits
- URL: http://arxiv.org/abs/1708.02130v5
- Date: Fri, 8 Dec 2023 01:39:34 GMT
- Title: Classical Homomorphic Encryption for Quantum Circuits
- Authors: Urmila Mahadev
- Abstract summary: We present the first leveled fully homomorphic encryption scheme for quantum circuits with classical keys.
We show that it is possible to construct such a scheme directly from a quantum secure classical homomorphic encryption scheme with certain properties.
- Score: 2.1756081703276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first leveled fully homomorphic encryption scheme for quantum
circuits with classical keys. The scheme allows a classical client to blindly
delegate a quantum computation to a quantum server: an honest server is able to
run the computation while a malicious server is unable to learn any information
about the computation. We show that it is possible to construct such a scheme
directly from a quantum secure classical homomorphic encryption scheme with
certain properties. Finally, we show that a classical homomorphic encryption
scheme with the required properties can be constructed from the learning with
errors problem.
Related papers
- Encryption with Quantum Public Keys [1.7725414095035827]
We study the question of building quantum public-key encryption schemes from one-way functions and even weaker assumptions.
We propose three schemes for quantum public-key encryption from one-way functions, pseudorandom function-like states with proof of deletion and pseudorandom function-like states, respectively.
arXiv Detail & Related papers (2023-03-09T16:17:19Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Obfuscation of Pseudo-Deterministic Quantum Circuits [14.026980555435841]
We show how to obfuscate pseudo-deterministic quantum circuits in the classical oracle model.
Our obfuscator outputs a quantum state $ketwidetildeQ$ repeatedly on arbitrary inputs.
arXiv Detail & Related papers (2023-02-22T01:14:20Z) - Privacy and correctness trade-offs for information-theoretically secure
quantum homomorphic encryption [19.014535120129345]
Quantum homomorphic encryption allows computation by a server directly on encrypted data.
For such constructions to be possible, quantum homomorphic encryption must satisfy two privacy properties.
Our work unravels fundamental trade-offs between circuit privacy, data privacy and correctness for a broad family of quantum homomorphic encryption protocols.
arXiv Detail & Related papers (2022-05-24T15:02:34Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - Forging quantum data: classically defeating an IQP-based quantum test [0.0]
We describe a classical algorithm that can convince the verifier that the (classical) prover is quantum.
We show that the key extraction algorithm is efficient in practice for problem sizes of hundreds of qubits.
arXiv Detail & Related papers (2019-12-11T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.