Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems
- URL: http://arxiv.org/abs/2003.10478v1
- Date: Mon, 23 Mar 2020 18:23:12 GMT
- Title: Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems
- Authors: Ivan Vybornyi, Abderrahmen Trichili, Mohamed-Slim Alouini
- Abstract summary: We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
- Score: 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on the fundamental rules of quantum mechanics, two communicating
parties can generate and share a secret random key that can be used to encrypt
and decrypt messages sent over an insecure channel. This process is known as
quantum key distribution (QKD). Contrary to classical encryption schemes, the
security of a QKD system does not depend on the computational complexity of
specific mathematical problems. However, QKD systems can be subject to
different kinds of attacks, exploiting engineering and technical imperfections
of the components forming the systems. Here, we review the security
vulnerabilities of QKD. We mainly focus on a particular effect known as
backflash light, which can be a source of eavesdropping attacks. We equally
highlight the methods for quantifying backflash emission and the different ways
to mitigate this effect.
Related papers
- Combined Quantum and Post-Quantum Security for Earth-Satellite Channels [3.835450563934687]
We present results from a real-time prototype quantum key distribution (QKD) system.
A unique aspect of our system is the integration of QKD with existing cryptographic methods to ensure quantum-resistant security.
Our work demonstrates, for the first time, a deployment of the BBM92 protocol that offers both post-quantum security via the advanced encryption standard (AES) and quantum security via an entanglement-based QKD protocol.
arXiv Detail & Related papers (2025-02-20T04:08:23Z) - Secure Composition of Quantum Key Distribution and Symmetric Key Encryption [3.6678562499684517]
Quantum key distribution (QKD) allows Alice and Bob to share a secret key over an insecure channel with proven information-theoretic security against an adversary whose strategy is bounded only by the laws of physics.
We consider the problem of using the QKD established key with a secure symmetric key-based encryption algorithm and use an approach based on hybrid encryption to provide a proof of security for the composition.
arXiv Detail & Related papers (2025-01-14T20:58:02Z) - Secure Multi-Party Biometric Verification using QKD assisted Quantum Oblivious Transfer [34.46964288961048]
We present a practical implementation of a secure multiparty computation application enabled by quantum oblivious transfer (QOT)
The QOT protocol uses polarization-encoded entangled states to share oblivious keys between two parties with quantum key distribution (QKD) providing authentication.
A practical use case is demonstrated for privacy-preserving fingerprint matching against no-fly lists from Interpol and the United Nations.
arXiv Detail & Related papers (2025-01-09T15:51:30Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Quantum-Secured Data Centre Interconnect in a field environment [38.4938584033229]
Quantum key distribution (QKD) is an established quantum technology at a high readiness level.
In this article, we present the successful implementation of a QKD field trial within a commercial data centre environment.
The achieved average secret key rate of 2.392 kbps and an average quantum bit error rate of less than 2% demonstrate the commercial feasibility of QKD in real-world scenarios.
arXiv Detail & Related papers (2024-10-14T08:05:25Z) - Hybrid Quantum Cryptography from Communication Complexity [0.43695508295565777]
We build a key distribution protocol called HM-QCT from the Hidden Matching problem.
We show that the security of HM-QCT against arbitrary i.i.d. attacks can be reduced to the difficulty of solving the underlying Hidden Matching problem.
Remarkably, the scheme remains secure with up to $mathcalObig( fracsqrtnlog(n)big)$ input photons for each channel use.
arXiv Detail & Related papers (2023-11-15T18:03:15Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies.
QFL can be deployed over both classical and quantum communication networks.
arXiv Detail & Related papers (2023-10-23T02:56:00Z) - Deep-Learning-Based Radio-Frequency Side-Channel Attack on Quantum Key
Distribution [0.0]
Quantum key distribution (QKD) protocols are proven secure based on fundamental physical laws.
Side channels, where the encoded quantum state is correlated with properties of other degrees of freedom of the quantum channel, allow an eavesdropper to obtain information unnoticeably.
We here demonstrate a side-channel attack using a deep convolutional neural network to analyze the recorded classical, radio-frequency electromagnetic emissions.
arXiv Detail & Related papers (2023-10-20T18:00:02Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Quantum hacking perceiving for quantum key distribution using temporal
ghost imaging [7.7270491671042425]
Quantum key distribution (QKD) can generate secure key bits between remote users with quantum mechanics.
The most insidious attacks, known as quantum hacking, are the ones with no significant discrepancy of the measurement results.
We propose the method exploring temporal ghost imaging (TGI) scheme to perceive quantum hacking with temporal fingerprints.
arXiv Detail & Related papers (2020-12-28T02:21:09Z) - A quantum encryption design featuring confusion, diffusion, and mode of
operation [0.0]
We propose a non-OTP quantum encryption scheme utilizing a quantum state creation process to encrypt messages.
As essentially a non-OTP quantum block cipher the method stands out against existing methods with the following features.
arXiv Detail & Related papers (2020-10-06T22:23:30Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.