論文の概要: Cross-lingual, Character-Level Neural Morphological Tagging
- arxiv url: http://arxiv.org/abs/1708.09157v5
- Date: Thu, 6 Jun 2024 08:27:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-09 16:28:54.689470
- Title: Cross-lingual, Character-Level Neural Morphological Tagging
- Title(参考訳): 言語横断・文字レベルニューラルな形態的タグ付け
- Authors: Ryan Cotterell, Georg Heigold,
- Abstract要約: 文字レベルのリカレントなニューラルタグをトレーニングし、高リソース言語と低リソース言語を併用して形態的タグ付けを予測する。
複数の関連言語間の共同文字表現の学習は、高リソース言語から低リソース言語への知識伝達を成功させ、モノリンガルモデルの精度を最大30%向上させる。
- 参考スコア(独自算出の注目度): 57.0020906265213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even for common NLP tasks, sufficient supervision is not available in many languages -- morphological tagging is no exception. In the work presented here, we explore a transfer learning scheme, whereby we train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together. Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones, improving accuracy by up to 30% over a monolingual model.
- Abstract(参考訳): 一般的なNLPタスクであっても、多くの言語では十分な監視ができない。
そこで本研究では,高リソース言語と低リソース言語に対する形態的タグ付けを予測するために,文字レベルのリカレントなニューラルタグをトレーニングするトランスファーラーニング手法について検討する。
複数の関連言語間の共同文字表現の学習は、高リソース言語から低リソース言語への知識伝達を成功させ、モノリンガルモデルの精度を最大30%向上させる。
関連論文リスト
- Low-Resource Named Entity Recognition with Cross-Lingual, Character-Level Neural Conditional Random Fields [68.17213992395041]
低リソースのエンティティ認識は、まだNLPでは未解決の問題である。
そこで我々は,高リソース言語と低リソース言語の両方の名前付きエンティティを共同で予測するために,文字レベルのニューラルCRFを訓練する。
論文 参考訳(メタデータ) (2024-04-14T23:44:49Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - Transfer to a Low-Resource Language via Close Relatives: The Case Study
on Faroese [54.00582760714034]
言語間のNLP転送は、高ソース言語のデータとモデルを活用することで改善できる。
我々は、名前付きエンティティ認識(NER)、セマンティックテキスト類似性(STS)、スカンジナビア全言語で訓練された新しい言語モデルのためのFaroeseデータセットとFaroeseデータセットの新しいWebコーパスをリリースする。
論文 参考訳(メタデータ) (2023-04-18T08:42:38Z) - Improving Cross-lingual Information Retrieval on Low-Resource Languages
via Optimal Transport Distillation [21.057178077747754]
本稿では,低リソースな言語間情報検索のためのOPTICAL: Optimal Transport 蒸留法を提案する。
クエリドキュメントマッチングの知識から言語間知識を分離することにより、OPTICALは蒸留訓練のためのbitextデータのみを必要とする。
実験結果から,OPTICALは最小限のトレーニングデータにより,低リソース言語上での強いベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-01-29T22:30:36Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
負の干渉を軽減するために,HLT-MT(High-Resource Language-specific Training)を用いた多言語翻訳モデルを提案する。
具体的には、まずマルチ言語モデルを高リソースペアでトレーニングし、デコーダの上部にある言語固有のモジュールを選択する。
HLT-MTは、高リソース言語から低リソース言語への知識伝達のために、利用可能なすべてのコーパスでさらに訓練されている。
論文 参考訳(メタデータ) (2022-07-11T14:33:13Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
多言語事前学習モデルは文法に関する言語・ユニバーサルの抽象化を導出できると推測する。
43の言語と14のモルフォシンタクティックなカテゴリーで、最先端のニューロンレベルのプローブを用いて、初めて大規模な実験を行った。
論文 参考訳(メタデータ) (2022-05-04T12:22:31Z) - Morphological Processing of Low-Resource Languages: Where We Are and
What's Next [23.7371787793763]
注釈付きリソースが最小か全くない言語に適したアプローチに焦点を合わせます。
我々は、言語の形態を原文だけで理解する、論理的な次の課題に取り組む準備が整っていると論じる。
論文 参考訳(メタデータ) (2022-03-16T19:47:04Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
我々は、ナラビジ(NArabizi)と呼ばれるラテン文字の拡張を用いて書かれた北アフリカ方言のアラビア語に焦点を当てている。
ナラビジの99k文のみを学習し,小さな木バンクで微調整したキャラクタベースモデルは,大規模多言語モデルとモノリンガルモデルで事前学習した同じアーキテクチャで得られたものに近い性能を示す。
論文 参考訳(メタデータ) (2021-10-26T14:59:16Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
大量の生データに基づく事前学習言語モデルに基づく伝達学習は,NLPの最先端性能に到達するための新しい規範となっている。
このようなモデルは、目に見えない言語に対して複数の方法で振る舞うことを示す。
論文 参考訳(メタデータ) (2020-10-24T10:15:03Z) - Transfer learning and subword sampling for asymmetric-resource
one-to-many neural translation [14.116412358534442]
低リソース言語のためのニューラルマシン翻訳を改善する方法について概説する。
人工的に制限された3つの翻訳タスクと1つの現実世界タスクでテストが行われる。
実験は、特にスケジュールされたマルチタスク学習、denoising autoencoder、サブワードサンプリングに肯定的な効果を示す。
論文 参考訳(メタデータ) (2020-04-08T14:19:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。