On Early-stage Debunking Rumors on Twitter: Leveraging the Wisdom of Weak Learners
- URL: http://arxiv.org/abs/1709.04402v2
- Date: Tue, 9 Apr 2024 12:31:11 GMT
- Title: On Early-stage Debunking Rumors on Twitter: Leveraging the Wisdom of Weak Learners
- Authors: Tu Nguyen, Cheng Li, Claudia Niederée,
- Abstract summary: We present an approach for early rumor detection, which leverages Convolutional Neural Networks for learning the hidden representations of individual rumor-related tweets.
Our experiments show a clearly improved classification performance within the critical very first hours of a rumor.
- Score: 4.325479143880198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently a lot of progress has been made in rumor modeling and rumor detection for micro-blogging streams. However, existing automated methods do not perform very well for early rumor detection, which is crucial in many settings, e.g., in crisis situations. One reason for this is that aggregated rumor features such as propagation features, which work well on the long run, are - due to their accumulating characteristic - not very helpful in the early phase of a rumor. In this work, we present an approach for early rumor detection, which leverages Convolutional Neural Networks for learning the hidden representations of individual rumor-related tweets to gain insights on the credibility of each tweets. We then aggregate the predictions from the very beginning of a rumor to obtain the overall event credits (so-called wisdom), and finally combine it with a time series based rumor classification model. Our extensive experiments show a clearly improved classification performance within the critical very first hours of a rumor. For a better understanding, we also conduct an extensive feature evaluation that emphasized on the early stage and shows that the low-level credibility has best predictability at all phases of the rumor lifetime.
Related papers
- Generating Zero-shot Abstractive Explanations for Rumour Verification [46.897767694062004]
We reformulate the task to generate model-centric free-text explanations of a rumour's veracity.
We exploit the few-shot learning capabilities of a large language model (LLM)
Our experiments show that LLMs can have similar agreement to humans in evaluating summaries.
arXiv Detail & Related papers (2024-01-23T12:29:37Z) - Detecting Rumor Veracity with Only Textual Information by Double-Channel
Structure [7.931904787652709]
We propose a double-channel structure to determine the ex-ante veracity of rumors on social media.
We first assign each text into either certain (informed rumor) or uncertain (uninformed rumor) category.
Then, we apply lie detection algorithm to informed rumors and thread-reply agreement detection algorithm to uninformed rumors.
arXiv Detail & Related papers (2023-12-06T00:08:44Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
We propose contrastive self-supervised learning on heterogeneous information sources, so as to reveal their relations and characterize rumors better.
We term this framework as Self-supervised Rumor Detection (SRD)
Extensive experiments on three real-world datasets validate the effectiveness of SRD for automatic rumor detection on social media.
arXiv Detail & Related papers (2022-04-19T12:10:03Z) - Detect Rumors in Microblog Posts for Low-Resource Domains via
Adversarial Contrastive Learning [8.013665071332388]
We propose an adversarial contrastive learning framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced.
Our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
arXiv Detail & Related papers (2022-04-18T03:10:34Z) - What goes on inside rumour and non-rumour tweets and their reactions: A
Psycholinguistic Analyses [58.75684238003408]
psycho-linguistics analyses of social media text are vital for drawing meaningful conclusions to mitigate misinformation.
This research contributes by performing an in-depth psycholinguistic analysis of rumours related to various kinds of events.
arXiv Detail & Related papers (2021-11-09T07:45:11Z) - Calling to CNN-LSTM for Rumor Detection: A Deep Multi-channel Model for
Message Veracity Classification in Microblogs [0.0]
Rumors can notably cause severe damage on individuals and the society.
Most rumor detection approaches focus on rumor feature analysis and social features.
DeepMONITOR is based on deep neural networks and allows quite accurate automated rumor verification.
arXiv Detail & Related papers (2021-10-11T07:42:41Z) - Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis [65.74516068984232]
We conduct a comprehensive analysis of four months of rumor-related online discussion during COVID-19 on Weibo, a Chinese microblogging site.
Results suggest that the dread (cause fear) type of health rumors provoked significantly more discussions and lasted longer than the wish (raise hope) type.
We show the efficacy of debunking in suppressing rumor discussions, which is time-sensitive and varies across rumor types and debunkers.
arXiv Detail & Related papers (2021-09-25T14:02:29Z) - Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from
the First Week's Activities [56.1344233010643]
Several features are considered to contribute towards learner attrition or lack of interest, which may lead to disengagement or total dropout.
This study aims to predict dropout early-on, from the first week, by comparing several machine-learning approaches.
arXiv Detail & Related papers (2020-08-12T10:44:49Z) - Fine-Tune Longformer for Jointly Predicting Rumor Stance and Veracity [27.661609140918916]
We propose a multi-task learning framework for jointly predicting rumor stance and veracity.
Our framework consists of two parts: a) The bottom part of our framework classifies the stance for each post in the conversation thread discussing a rumor via modelling the multi-turn conversation and make each post aware of its neighboring posts.
Experimental results on SemEval 2019 Task 7 dataset show that our method outperforms previous methods on both rumor stance classification and veracity prediction.
arXiv Detail & Related papers (2020-07-15T17:09:17Z) - Rumor Detection on Social Media with Bi-Directional Graph Convolutional
Networks [89.13567439679709]
We propose a novel bi-directional graph model, named Bi-Directional Graph Convolutional Networks (Bi-GCN), to explore both characteristics by operating on both top-down and bottom-up propagation of rumors.
It leverages a GCN with a top-down directed graph of rumor spreading to learn the patterns of rumor propagation, and a GCN with an opposite directed graph of rumor diffusion to capture the structures of rumor dispersion.
arXiv Detail & Related papers (2020-01-17T15:12:08Z) - A Comprehensive Low and High-level Feature Analysis for Early Rumor Detection on Twitter [0.5031093893882576]
We use neural models to learn the hidden representations of individual rumor-related tweets at the very beginning of a rumor.
Our experiments show that the resulting signal improves our classification performance over time.
We conduct an extensive study on a wide range of high impact rumor features for the 48 hours range.
arXiv Detail & Related papers (2017-11-02T15:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.