Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis
- URL: http://arxiv.org/abs/2109.12372v2
- Date: Fri, 10 Jun 2022 14:25:58 GMT
- Title: Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis
- Authors: Wenjie Yang, Sitong Wang, Zhenhui Peng, Chuhan Shi, Xiaojuan Ma, Diyi
Yang
- Abstract summary: We conduct a comprehensive analysis of four months of rumor-related online discussion during COVID-19 on Weibo, a Chinese microblogging site.
Results suggest that the dread (cause fear) type of health rumors provoked significantly more discussions and lasted longer than the wish (raise hope) type.
We show the efficacy of debunking in suppressing rumor discussions, which is time-sensitive and varies across rumor types and debunkers.
- Score: 65.74516068984232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Health-related rumors spreading online during a public crisis may pose a
serious threat to people's well-being. Existing crisis informatics research
lacks in-depth insights into the characteristics of health rumors and the
efforts to debunk them on social media in a pandemic. To fill this gap, we
conduct a comprehensive analysis of four months of rumor-related online
discussion during COVID-19 on Weibo, a Chinese microblogging site. Results
suggest that the dread (cause fear) type of health rumors provoked
significantly more discussions and lasted longer than the wish (raise hope)
type. We further explore how four kinds of social media users (i.e.,
government, media, organization, and individual) combat health rumors, and
identify their preferred way of sharing debunking information and the key
rhetoric strategies used in the process. We examine the relationship between
debunking and rumor discussions using a Granger causality approach, and show
the efficacy of debunking in suppressing rumor discussions, which is
time-sensitive and varies across rumor types and debunkers. Our results can
provide insights into crisis informatics and risk management on social media in
pandemic settings.
Related papers
- Cutting through the noise to motivate people: A comprehensive analysis of COVID-19 social media posts de/motivating vaccination [1.1606619391009658]
The COVID-19 pandemic exposed significant weaknesses in the healthcare information system.
The overwhelming volume of misinformation on social media created challenges to motivate people to take proper precautions and get vaccinated.
This study addresses scientific communication and public motivation in social media.
arXiv Detail & Related papers (2024-06-15T02:36:11Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Understanding Twitters behavior during the pandemic: Fake News and Fear [0.0]
The SARS-CoV-2 novel coronavirus (COVID-19) has been accompanied by a large amount of misleading and false information about the virus, especially on social media.
We aim to explore the percentage of fake news being spread on Twitter as well as measure the sentiment of the public at the same time.
Our study is useful in establishing the role of Twitter, and social media, during a crisis, and more specifically during crisis management.
arXiv Detail & Related papers (2022-02-10T16:39:29Z) - What goes on inside rumour and non-rumour tweets and their reactions: A
Psycholinguistic Analyses [58.75684238003408]
psycho-linguistics analyses of social media text are vital for drawing meaningful conclusions to mitigate misinformation.
This research contributes by performing an in-depth psycholinguistic analysis of rumours related to various kinds of events.
arXiv Detail & Related papers (2021-11-09T07:45:11Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
We make the first attempt to detect COVID-19 misinformation in a low-resource language (Chinese) only using the fact-checked news in a high-resource language (English)
We propose a deep learning framework named CrossFake to jointly encode the cross-lingual news body texts and capture the news content.
Empirical results on our dataset demonstrate the effectiveness of CrossFake under the cross-lingual setting.
arXiv Detail & Related papers (2021-10-13T04:44:02Z) - American Twitter Users Revealed Social Determinants-related Oral Health
Disparities amid the COVID-19 Pandemic [72.44305630014534]
We collected oral health-related tweets during the COVID-19 pandemic from 9,104 Twitter users across 26 states.
Women and younger adults (19-29) are more likely to talk about oral health problems.
People from counties at a higher risk of COVID-19 talk more about tooth decay/gum bleeding and chipped tooth/tooth break.
arXiv Detail & Related papers (2021-09-16T01:10:06Z) - Analysis of misinformation during the COVID-19 outbreak in China:
cultural, social and political entanglements [6.256108383411306]
COVID-19 resulted in an infodemic, which could erode public trust, impede virus containment, and outlive the pandemic itself.
The evolving and fragmented media landscape is a key driver of the spread of misinformation.
Our findings shed light on the distinct characteristics of misinformation during the COVID-19 and offer insights into combating misinformation in China and across the world at large.
arXiv Detail & Related papers (2020-05-21T01:34:08Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
An estimated 2.95 billion people in 2019 used social media worldwide.
The widespread of the Coronavirus COVID-19 resulted with a tsunami of social media.
This paper presents a large-scale study based on data mined from Twitter.
arXiv Detail & Related papers (2020-05-18T15:53:13Z) - Psychometric Analysis and Coupling of Emotions Between State Bulletins
and Twitter in India during COVID-19 Infodemic [7.428097999824421]
COVID-19 infodemic has been spreading faster than the pandemic itself.
Since social media is the largest source of information, managing the infodemic requires mitigating of misinformation.
Twitter alone has seen a sharp 45% increase in the usage of its curated events page.
arXiv Detail & Related papers (2020-05-12T01:51:07Z) - Rumor Detection on Social Media with Bi-Directional Graph Convolutional
Networks [89.13567439679709]
We propose a novel bi-directional graph model, named Bi-Directional Graph Convolutional Networks (Bi-GCN), to explore both characteristics by operating on both top-down and bottom-up propagation of rumors.
It leverages a GCN with a top-down directed graph of rumor spreading to learn the patterns of rumor propagation, and a GCN with an opposite directed graph of rumor diffusion to capture the structures of rumor dispersion.
arXiv Detail & Related papers (2020-01-17T15:12:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.