論文の概要: Deep Learning for Genomics: A Concise Overview
- arxiv url: http://arxiv.org/abs/1802.00810v4
- Date: Wed, 4 Oct 2023 20:26:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-06 23:49:21.643314
- Title: Deep Learning for Genomics: A Concise Overview
- Title(参考訳): ゲノム学のためのディープラーニング: 簡潔な概要
- Authors: Tianwei Yue, Yuanxin Wang, Longxiang Zhang, Chunming Gu, Haoru Xue,
Wenping Wang, Qi Lyu, Yujie Dun
- Abstract要約: 深層学習は視覚、音声、テキスト処理など様々な分野で成功している。
ゲノミクスは、深層学習から超人的知能を期待しているため、深層学習に固有の課題を伴います。
強力なディープラーニングモデルは、タスク固有の知識の洞察に頼らなければならない。
- 参考スコア(独自算出の注目度): 31.07473810091344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in genomic research such as high-throughput sequencing
techniques have driven modern genomic studies into "big data" disciplines. This
data explosion is constantly challenging conventional methods used in genomics.
In parallel with the urgent demand for robust algorithms, deep learning has
succeeded in a variety of fields such as vision, speech, and text processing.
Yet genomics entails unique challenges to deep learning since we are expecting
from deep learning a superhuman intelligence that explores beyond our knowledge
to interpret the genome. A powerful deep learning model should rely on
insightful utilization of task-specific knowledge. In this paper, we briefly
discuss the strengths of different deep learning models from a genomic
perspective so as to fit each particular task with a proper deep architecture,
and remark on practical considerations of developing modern deep learning
architectures for genomics. We also provide a concise review of deep learning
applications in various aspects of genomic research, as well as pointing out
potential opportunities and obstacles for future genomics applications.
- Abstract(参考訳): 高スループットシーケンシング技術などのゲノム研究の進歩は、現代のゲノム研究を「大きなデータ」分野へと駆り立てている。
このデータ爆発は、ゲノム学で使われる従来の手法に常に挑戦している。
堅牢なアルゴリズムの急激な需要と並行して、ディープラーニングは視覚、音声、テキスト処理といった様々な分野に成功している。
しかし、ゲノム学は、私たちの知識を越えてゲノムを解釈する超人的な知能を深層学習から期待しているため、深層学習に固有の課題を伴います。
強力なディープラーニングモデルは、タスク固有の知識の洞察に頼らなければならない。
本稿では,それぞれのタスクを適切な深層アーキテクチャに適合させるために,ゲノムの観点から異なる深層学習モデルの強みを簡潔に論じるとともに,現代的深層学習アーキテクチャの開発に関する実践的考察について述べる。
また、ゲノム研究のさまざまな側面における深層学習応用の簡潔なレビューを行い、将来的なゲノム応用の可能性と障害を指摘した。
関連論文リスト
- Deep Learning for Educational Data Science [0.6138671548064356]
ユースケースは、オープンエンドの学生エッセイやコードのスニペットを活用する高度な知識追跡モデルから、自動影響検知や行動検出まで、さまざまです。
この章は、ディープラーニングの簡単な紹介、その利点と限界のいくつかの説明、教育における多くの利用に関する調査、そしてそれが教育データ科学の分野をさらに形成させる可能性について論じている。
論文 参考訳(メタデータ) (2024-04-12T19:17:14Z) - A Survey on State-of-the-art Deep Learning Applications and Challenges [0.0]
ディープラーニングモデルの構築は、アルゴリズムの複雑さと現実世界の問題の動的な性質のため、難しい。
本研究の目的は,コンピュータビジョン,自然言語処理,時系列解析,広範コンピューティングにおける最先端のディープラーニングモデルを網羅的にレビューすることである。
論文 参考訳(メタデータ) (2024-03-26T10:10:53Z) - Unveiling the frontiers of deep learning: innovations shaping diverse
domains [6.951472438774211]
ディープラーニング(DL)は、学習、視覚化、最適化、精錬、予測が可能なコンピュータモデルの開発を可能にする。
DLは、オーディオ視覚データ処理、農業、交通予測、自然言語、バイオメディシン、災害管理、バイオインフォマティクス、薬物設計、ゲノム学、顔認識、生態学など、様々な分野に適用されている。
本稿では,すべての研究分野におけるディープラーニングの適用可能性と,関連するメリットと課題について検討する。
論文 参考訳(メタデータ) (2023-09-06T04:50:39Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
蓄積とは、以前に獲得した知識の喪失または劣化を指す。
フォッテッティングは、深層学習における様々な研究領域でよく見られる現象である。
論文 参考訳(メタデータ) (2023-07-16T16:27:58Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
既存の知識強化手法を2つの主要なカテゴリと4つのサブカテゴリに分類する新しい分類法を導入する。
我々は、現在のアプリケーションドメインを解明し、将来的な研究の展望について洞察を提供する。
論文 参考訳(メタデータ) (2023-02-04T04:54:30Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
知識強化ディープラーニング(KADL)は、ドメイン知識を特定し、それをデータ効率、一般化可能、解釈可能なディープラーニングのためのディープモデルに統合することを目的としている。
本調査は,既存の研究成果を補足し,知識強化深層学習の一般分野における鳥眼研究の展望を提供する。
論文 参考訳(メタデータ) (2022-11-30T03:44:15Z) - Bridging Machine Learning and Sciences: Opportunities and Challenges [0.0]
機械学習の科学への応用は、近年、エキサイティングな進歩を遂げている。
近年,ディープ・ニューラルネットを用いたアウト・オブ・ディストリビューション検出は高次元データにおいて大きな進歩を遂げている。
我々は、データ普遍性、実験プロトコル、モデル堅牢性など、それらの適用可能性について批判的に考察する。
論文 参考訳(メタデータ) (2022-10-24T17:54:46Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。