The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation
- URL: http://arxiv.org/abs/1802.07228v2
- Date: Sun, 01 Dec 2024 17:59:04 GMT
- Title: The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation
- Authors: Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley, Ben Garfinkel, Allan Dafoe, Paul Scharre, Thomas Zeitzoff, Bobby Filar, Hyrum Anderson, Heather Roff, Gregory C. Allen, Jacob Steinhardt, Carrick Flynn, Seán Ó hÉigeartaigh, SJ Beard, Haydn Belfield, Sebastian Farquhar, Clare Lyle, Rebecca Crootof, Owain Evans, Michael Page, Joanna Bryson, Roman Yampolskiy, Dario Amodei,
- Abstract summary: This report surveys the landscape of potential security threats from malicious uses of AI, and proposes ways to better forecast, prevent, and mitigate these threats.<n>After analyzing the ways in which AI may influence the threat landscape in the digital, physical, and political domains, we make four high-level recommendations for AI researchers and other stakeholders.
- Score: 34.08068963253976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report surveys the landscape of potential security threats from malicious uses of AI, and proposes ways to better forecast, prevent, and mitigate these threats. After analyzing the ways in which AI may influence the threat landscape in the digital, physical, and political domains, we make four high-level recommendations for AI researchers and other stakeholders. We also suggest several promising areas for further research that could expand the portfolio of defenses, or make attacks less effective or harder to execute. Finally, we discuss, but do not conclusively resolve, the long-term equilibrium of attackers and defenders.
Related papers
- Graph of Effort: Quantifying Risk of AI Usage for Vulnerability Assessment [0.0]
An AI used to attack non-AI assets is referred to as offensive AI.
The risk of exploiting its capabilities, such as high automation and complex pattern recognition, could significantly increase.
This paper introduces the Graph of Effort, an intuitive, flexible, and effective threat modeling method for analyzing the effort required to use offensive AI for vulnerability exploitation by an adversary.
arXiv Detail & Related papers (2025-03-20T17:52:42Z) - A Comprehensive Review of Adversarial Attacks on Machine Learning [0.5104264623877593]
This research provides a comprehensive overview of adversarial attacks on AI and ML models, exploring various attack types, techniques, and their potential harms.
To gain practical insights, we employ the Adversarial Robustness Toolbox (ART) library to simulate these attacks on real-world use cases, such as self-driving cars.
arXiv Detail & Related papers (2024-12-16T02:27:54Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
Social engineering (SE) attacks remain a significant threat to both individuals and organizations.
The advancement of Artificial Intelligence (AI) has potentially intensified these threats by enabling more personalized and convincing attacks.
This survey paper categorizes SE attack mechanisms, analyzes their evolution, and explores methods for measuring these threats.
arXiv Detail & Related papers (2024-07-22T17:37:31Z) - Exploring Vulnerabilities and Protections in Large Language Models: A Survey [1.6179784294541053]
This survey examines the security challenges of Large Language Models (LLMs)
It focuses on two main areas: Prompt Hacking and Adversarial Attacks.
By detailing these security issues, the survey contributes to the broader discussion on creating resilient AI systems.
arXiv Detail & Related papers (2024-06-01T00:11:09Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - A Novel Approach to Guard from Adversarial Attacks using Stable Diffusion [0.0]
Our proposal suggests a different approach to the AI Guardian framework.
Instead of including adversarial examples in the training process, we propose training the AI system without them.
This aims to create a system that is inherently resilient to a wider range of attacks.
arXiv Detail & Related papers (2024-05-03T04:08:15Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
Recent works have identified a gap between research and practice in artificial intelligence security.
We revisit the threat models of the six most studied attacks in AI security research and match them to AI usage in practice.
arXiv Detail & Related papers (2023-11-16T16:09:44Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors.
We present ROAR, a new class of attacks that instantiate a variety of such threats.
We explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries.
arXiv Detail & Related papers (2023-05-03T18:47:42Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
This survey explores the threat of offensive AI on organizations.
First, we discuss how AI changes the adversary's methods, strategies, goals, and overall attack model.
Then, through a literature review, we identify 33 offensive AI capabilities which adversaries can use to enhance their attacks.
arXiv Detail & Related papers (2021-06-30T01:03:28Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
In recent years, most AI models are vulnerable to advanced and sophisticated hacking techniques.
This challenge has motivated concerted research efforts into adversarial AI.
We present a holistic cyber security review that demonstrates adversarial attacks against AI applications.
arXiv Detail & Related papers (2021-02-09T06:06:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.