Countering Autonomous Cyber Threats
- URL: http://arxiv.org/abs/2410.18312v1
- Date: Wed, 23 Oct 2024 22:46:44 GMT
- Title: Countering Autonomous Cyber Threats
- Authors: Kade M. Heckel, Adrian Weller,
- Abstract summary: Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
- Score: 40.00865970939829
- License:
- Abstract: With the capability to write convincing and fluent natural language and generate code, Foundation Models present dual-use concerns broadly and within the cyber domain specifically. Generative AI has already begun to impact cyberspace through a broad illicit marketplace for assisting malware development and social engineering attacks through hundreds of malicious-AI-as-a-services tools. More alarming is that recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations. However, these previous investigations primarily focused on the threats posed by proprietary models due to the until recent lack of strong open-weight model and additionally leave the impacts of network defenses or potential countermeasures unexplored. Critically, understanding the aptitude of downloadable models to function as offensive cyber agents is vital given that they are far more difficult to govern and prevent their misuse. As such, this work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks. Using target machines from a commercial provider, the most recently released downloadable models are found to be on par with a leading proprietary model at conducting simple cyber attacks with common hacking tools against known vulnerabilities. To mitigate such LLM-powered threats, defensive prompt injection (DPI) payloads for disrupting the malicious cyber agent's workflow are demonstrated to be effective. From these results, the implications for AI safety and governance with respect to cybersecurity is analyzed.
Related papers
- Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
arXiv Detail & Related papers (2024-10-11T15:15:09Z) - BreachSeek: A Multi-Agent Automated Penetration Tester [0.0]
BreachSeek is an AI-driven multi-agent software platform that identifies and exploits vulnerabilities without human intervention.
In preliminary evaluations, BreachSeek successfully exploited vulnerabilities in exploitable machines within local networks.
Future developments aim to expand its capabilities, positioning it as an indispensable tool for cybersecurity professionals.
arXiv Detail & Related papers (2024-08-31T19:15:38Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
This paper delves into the escalating threat posed by the misuse of AI, specifically through the use of Large Language Models (LLMs)
Through a series of controlled experiments, the paper demonstrates how these models can be manipulated to bypass ethical and privacy safeguards to effectively generate cyber attacks.
We also introduce Occupy AI, a customized, finetuned LLM specifically engineered to automate and execute cyberattacks.
arXiv Detail & Related papers (2024-08-23T02:56:13Z) - Threat analysis and adversarial model for Smart Grids [1.7482569079741024]
The cyber domain of this smart power grid opens a new plethora of threats.
Different stakeholders including regulation bodies, industry and academy are making efforts to provide security mechanisms to mitigate and reduce cyber-risks.
Recent work shows a lack of agreement among grid practitioners and academic experts on the feasibility and consequences of academic-proposed threats.
This is in part due to inadequate simulation models which do not evaluate threats based on attackers full capabilities and goals.
arXiv Detail & Related papers (2024-06-17T16:33:46Z) - Generative AI in Cybersecurity [0.0]
Generative Artificial Intelligence (GAI) has been pivotal in reshaping the field of data analysis, pattern recognition, and decision-making processes.
As GAI rapidly progresses, it outstrips the current pace of cybersecurity protocols and regulatory frameworks.
The study highlights the critical need for organizations to proactively identify and develop more complex defensive strategies to counter the sophisticated employment of GAI in malware creation.
arXiv Detail & Related papers (2024-05-02T19:03:11Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
Recent works have identified a gap between research and practice in artificial intelligence security.
We revisit the threat models of the six most studied attacks in AI security research and match them to AI usage in practice.
arXiv Detail & Related papers (2023-11-16T16:09:44Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
arXiv Detail & Related papers (2021-01-17T19:44:09Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.