Linear localization of zero modes in weakly coupled non-Hermitian
reservoirs
- URL: http://arxiv.org/abs/1804.00579v2
- Date: Wed, 15 Nov 2023 17:14:26 GMT
- Title: Linear localization of zero modes in weakly coupled non-Hermitian
reservoirs
- Authors: Bingkun Qi and Li Ge
- Abstract summary: We show that a non-Hermitian zero mode displays a linearly decreasing amplitude as a function of space.
We attribute it to the non-Bloch solution of a linear homogeneous recurrence relation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological and symmetry-protected non-Hermitian zero modes have attracted
considerable interest in the past few years. Here we reveal that they can
exhibit an unusual behavior when transitioning between the extended and
localized regimes: When weakly coupled to a non-Hermitian reservoir, such a
zero mode displays a linearly decreasing amplitude as a function of space,
which is not caused by an EP of a Hamiltonian, either of the entire system or
the reservoir itself. Instead, we attribute it to the non-Bloch solution of a
linear homogeneous recurrence relation, together with the underlying
non-Hermitian particle-hole symmetry and the zeroness of its energy.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Robust zero modes in non-Hermitian systems without global symmetries [4.828619888735037]
We present an approach to achieve zero modes in lattice models that do not rely on any symmetry or topology of the bulk.
Such symmetry-free zero modes (SFZMs) are formed by attaching a single site or small cluster with zero mode(s) to the bulk, which serves as the "nucleus" that expands to the entire lattice.
arXiv Detail & Related papers (2023-11-02T19:41:14Z) - Localization with non-Hermitian off-diagonal disorder [0.0]
We discuss a non-Hermitian system governed by random nearest-neighbour tunnellings.
A physical situation of completely real eigenspectrum arises owing to the Hamiltonian's tridiagonal matrix structure.
The off-diagonal disorder leads the non-Hermitian system to a delocalization-localization crossover in finite systems.
arXiv Detail & Related papers (2023-10-20T18:02:01Z) - Stability via symmetry breaking in interacting driven systems [0.0]
Photonic and bosonic systems subject to incoherent, wide-bandwidth driving cannot typically reach stable finite-density phases using only non-dissipative Hamiltonian nonlinearities.
We describe here a very general mechanism for circumventing this common limit, whereby Hamiltonian interactions can cut-off heating from a Markovian pump.
arXiv Detail & Related papers (2023-07-31T15:07:07Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Direct observation of zero modes in a non-Hermitian nanocavity array [48.7576911714538]
We report on the direct observation of zero modes in a non-Hermitian three coupled photonic crystal nanocavity array containing quantum wells.
Unlike the Hermitian counterparts, the non-Hermitian zero modes can only be observed for small sublattice detuning.
arXiv Detail & Related papers (2021-08-22T09:19:59Z) - Dissipative dynamics in open XXZ Richardson-Gaudin models [0.0]
In specific open systems with collective dissipation the Liouvillian can be mapped to a non-Hermitian Hamiltonian.
We consider such a system where the Liouvillian is mapped to an XXZ Richardson-Gaudin integrable model and detail its exact Bethe ansatz solution.
arXiv Detail & Related papers (2021-08-03T18:00:08Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.