Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry
- URL: http://arxiv.org/abs/2411.12167v1
- Date: Tue, 19 Nov 2024 02:15:59 GMT
- Title: Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry
- Authors: Alexander Felski, Flore K. Kunst,
- Abstract summary: We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.
We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
- Score: 49.1574468325115
- License:
- Abstract: Nonlinearity and non-Hermiticity, for example due to environmental gain-loss processes, are a common occurrence throughout numerous areas of science and lie at the root of many remarkable phenomena. For the latter, parity-time-reflection ($\mathcal{PT}$) symmetry has played an eminent role in understanding exceptional-point structures and phase transitions in these systems. Yet their interplay has remained by-and-large unexplored. We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics. These are foundational nonlinear models that find widespread application and offer a broad platform for non-Hermitian theory beyond physics. In this context we study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and, in contrast, (b) when these symmetries emerge locally around stationary states--in which case the connection between the linear non-Hermitian model and an underlying nonlinear system becomes tenuous. We outline further that when the relevant symmetries are related to global properties, the location of exceptional points in the linearization around coexistence equilibria coincides with abrupt global changes in the stability of the nonlinear dynamics. Exceptional points may thus offer a new local characteristic for the understanding of these systems. Tri-trophic models of population ecology serve as test cases for higher-dimensional systems.
Related papers
- Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Subsystem Symmetry Fractionalization and Foliated Field Theory [0.0]
Topological quantum matter exhibits a range of exotic phenomena when enriched by subdimensional symmetries.
A recently discovered example is a type of subsystem symmetry fractionalization that occurs through a different mechanism to global symmetry fractionalization.
arXiv Detail & Related papers (2024-03-14T04:44:11Z) - Homotopy, Symmetry, and Non-Hermitian Band Topology [4.777212360753631]
We show that non-Hermitian bands exhibit intriguing exceptional points, spectral braids and crossings.
We reveal different Abelian and non-Abelian phases in $mathcalPT$-symmetric systems.
These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena.
arXiv Detail & Related papers (2023-09-25T18:00:01Z) - Spectral Properties of Disordered Interacting Non-Hermitian Systems [2.2559617939136505]
We consider non-hermitian interacting disordered Hamiltonians and attempt to analyze their chaotic behavior or lack of it.
Our thorough analysis is expected to play a crucial role in understanding disordered open quantum systems in general.
arXiv Detail & Related papers (2022-08-04T17:10:15Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Approximately Equivariant Networks for Imperfectly Symmetric Dynamics [24.363954435050264]
We find that our models can outperform both baselines with no symmetry bias and baselines with overly strict symmetry in both simulated turbulence domains and real-world multi-stream jet flow.
arXiv Detail & Related papers (2022-01-28T07:31:28Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials.
mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr'e-Harper model.
arXiv Detail & Related papers (2020-12-02T19:00:09Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.