Incremental Predictive Process Monitoring: How to Deal with the
Variability of Real Environments
- URL: http://arxiv.org/abs/1804.03967v2
- Date: Wed, 25 Oct 2023 13:49:44 GMT
- Title: Incremental Predictive Process Monitoring: How to Deal with the
Variability of Real Environments
- Authors: Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi,
Williams Rizzi, Cosimo Damiano Persia
- Abstract summary: We propose the use of algorithms that allow the incremental construction of the predictive model.
The algorithms have been implemented using different case encoding strategies and evaluated on a number of real and synthetic datasets.
- Score: 13.999481573773075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A characteristic of existing predictive process monitoring techniques is to
first construct a predictive model based on past process executions, and then
use it to predict the future of new ongoing cases, without the possibility of
updating it with new cases when they complete their execution. This can make
predictive process monitoring too rigid to deal with the variability of
processes working in real environments that continuously evolve and/or exhibit
new variant behaviors over time. As a solution to this problem, we propose the
use of algorithms that allow the incremental construction of the predictive
model. These incremental learning algorithms update the model whenever new
cases become available so that the predictive model evolves over time to fit
the current circumstances. The algorithms have been implemented using different
case encoding strategies and evaluated on a number of real and synthetic
datasets. The results provide a first evidence of the potential of incremental
learning strategies for predicting process monitoring in real environments, and
of the impact of different case encoding strategies in this setting.
Related papers
- RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms [0.393259574660092]
RHiOTS is designed to assess the robustness of hierarchical time series forecasting models and algorithms on real-world datasets.
RHiOTS incorporates an innovative visualization component, turning complex, multidimensional robustness evaluation results into intuitive, easily interpretable visuals.
Our findings show that traditional statistical methods are more robust than state-of-the-art deep learning algorithms, except when the transformation effect is highly disruptive.
arXiv Detail & Related papers (2024-08-06T18:52:15Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Continual Predictive Learning from Videos [100.27176974654559]
We study a new continual learning problem in the context of video prediction.
We propose the continual predictive learning (CPL) approach, which learns a mixture world model via predictive experience replay.
We construct two new benchmarks based on RoboNet and KTH, in which different tasks correspond to different physical robotic environments or human actions.
arXiv Detail & Related papers (2022-04-12T08:32:26Z) - How do I update my model? On the resilience of Predictive Process
Monitoring models to change [15.29342790344802]
Predictive Process Monitoring techniques typically construct a predictive model based on past process executions, and then use it to predict the future of new ongoing cases.
This can make Predictive Process Monitoring too rigid to deal with the variability of processes working in real environments.
We evaluate the use of three different strategies that allow the periodic rediscovery or incremental construction of the predictive model.
arXiv Detail & Related papers (2021-09-08T08:50:56Z) - Process Model Forecasting Using Time Series Analysis of Event Sequence
Data [0.23099144596725568]
We develop a technique to forecast the entire process model from historical event data.
Our implementation demonstrates the accuracy of our technique on real-world event log data.
arXiv Detail & Related papers (2021-05-03T18:00:27Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - Predictive Process Model Monitoring using Recurrent Neural Networks [2.4029798593292706]
This paper introduces Processes-As-Movies (PAM), a technique that provides a middle ground between predictive monitoring.
It does so by capturing declarative process constraints between activities in various windows of a process execution trace.
Various recurrent neural network topologies tailored to high-dimensional input are used to model the process model evolution with windows as time steps.
arXiv Detail & Related papers (2020-11-05T13:57:33Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
We present a policy gradient algorithm that maximizes a forecast of future performance.
We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques.
arXiv Detail & Related papers (2020-05-17T03:41:19Z) - Predictive Business Process Monitoring via Generative Adversarial Nets:
The Case of Next Event Prediction [0.026249027950824504]
This paper proposes a novel adversarial training framework to address the problem of next event prediction.
It works by putting one neural network against the other in a two-player game which leads to predictions that are indistinguishable from the ground truth.
It systematically outperforms all baselines both in terms of accuracy and earliness of the prediction, despite using a simple network architecture and a naive feature encoding.
arXiv Detail & Related papers (2020-03-25T08:31:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.