Uncovering mesa-optimization algorithms in Transformers
- URL: http://arxiv.org/abs/2309.05858v2
- Date: Tue, 15 Oct 2024 13:43:50 GMT
- Title: Uncovering mesa-optimization algorithms in Transformers
- Authors: Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas, Max Vladymyrov, Razvan Pascanu, João Sacramento,
- Abstract summary: Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
- Score: 61.06055590704677
- License:
- Abstract: Some autoregressive models exhibit in-context learning capabilities: being able to learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so. The origins of this phenomenon are still poorly understood. Here we analyze a series of Transformer models trained to perform synthetic sequence prediction tasks, and discover that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed. We show that this process corresponds to gradient-based optimization of a principled objective function, which leads to strong generalization performance on unseen sequences. Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
Related papers
- Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Trained Transformers Learn Linear Models In-Context [39.56636898650966]
Attention-based neural networks as transformers have demonstrated a remarkable ability to exhibit inattention learning (ICL)
We show that when transformer training over random instances of linear regression problems, these models' predictions mimic nonlinear of ordinary squares.
arXiv Detail & Related papers (2023-06-16T15:50:03Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - What learning algorithm is in-context learning? Investigations with
linear models [87.91612418166464]
We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly.
We show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression.
Preliminary evidence that in-context learners share algorithmic features with these predictors.
arXiv Detail & Related papers (2022-11-28T18:59:51Z) - Initialization and Regularization of Factorized Neural Layers [23.875225732697142]
We show how to initialize and regularize Factorized layers in deep nets.
We show how these schemes lead to improved performance on both translation and unsupervised pre-training.
arXiv Detail & Related papers (2021-05-03T17:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.