論文の概要: An Unsupervised Learning Classifier with Competitive Error Performance
- arxiv url: http://arxiv.org/abs/1806.09385v3
- Date: Mon, 30 Sep 2024 12:51:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-13 03:47:37.086863
- Title: An Unsupervised Learning Classifier with Competitive Error Performance
- Title(参考訳): 競合エラー性能をもつ教師なし学習分類器
- Authors: Daniel N. Nissani,
- Abstract要約: このモデルは、選択された識別超平面上での小さなステップシフトと回転操作の漸進的な実行に基づいている。
ImageNetデータセットベンチマークのサブセットに選択された特徴抽出器と共に適用すると、エラーの確率は6.2 %になる。
この結果は、同じデータセットで事実上役に立たないことを示すk-Meansのような、一般的な教師なし学習スキームとも対照的である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: An unsupervised learning classification model is described. It achieves classification error probability competitive with that of popular supervised learning classifiers such as SVM or kNN. The model is based on the incremental execution of small step shift and rotation operations upon selected discriminative hyperplanes at the arrival of input samples. When applied, in conjunction with a selected feature extractor, to a subset of the ImageNet dataset benchmark, it yields 6.2 % Top 3 probability of error; this exceeds by merely about 2 % the result achieved by (supervised) k-Nearest Neighbor, both using same feature extractor. This result may also be contrasted with popular unsupervised learning schemes such as k-Means which is shown to be practically useless on same dataset.
- Abstract(参考訳): 教師なし学習分類モデルについて述べる。
SVMやkNNのような一般的な教師付き学習分類器と競合する分類誤差確率を実現する。
このモデルは、入力サンプルの到着時に選択された識別超平面上での小さなステップシフトと回転操作の漸進的な実行に基づいている。
ImageNetデータセットベンチマークのサブセットに選択された特徴抽出器とともに適用された場合、エラーの確率は6.2 %となり、同じ特徴抽出器を使用して、k-Nearest Neighborによって達成された結果の2 %をわずかに超える。
この結果は、同じデータセットで事実上役に立たないことを示すk-Meansのような、一般的な教師なし学習スキームとも対照的である。
関連論文リスト
- NorMatch: Matching Normalizing Flows with Discriminative Classifiers for
Semi-Supervised Learning [8.749830466953584]
Semi-Supervised Learning (SSL)は、小さなラベル付きセットと大量のラベルなしデータを使ってモデルを学習することを目的としている。
この作業では、NorMatchというSSLの新しいフレームワークを紹介します。
数値的および視覚的な結果を通して、NorMatchはいくつかのデータセットで最先端のパフォーマンスを達成することを実証する。
論文 参考訳(メタデータ) (2022-11-17T15:39:18Z) - Ensemble Classifier Design Tuned to Dataset Characteristics for Network
Intrusion Detection [0.0]
データセットのクラスオーバーラップ問題に対処する2つの新しいアルゴリズムが提案されている。
提案手法は二進分類と多進分類の両方で評価される。
論文 参考訳(メタデータ) (2022-05-08T21:06:42Z) - On The Effectiveness of One-Class Support Vector Machine in Different Defect Prediction Scenarios [7.592094566354553]
欠陥予測は、ソフトウェアがエンドユーザに提供される前に障害を引き起こす可能性のあるソフトウェアコンポーネントを特定することを目的としている。
以前の研究では、ワンクラスサポートベクトルマシン(OCSVM)が、プロジェクト内欠陥予測のために2クラス分類器より優れていることが示されている。
一方のクラスからの学習が,他の2つの異なるシナリオにおいて効果的な欠陥予測モデルを生成するのに十分かどうかを検討する。
論文 参考訳(メタデータ) (2022-02-24T12:57:14Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
我々は,クラスタリング性能に重要な識別表現を学習するために,Neighborhood Contrastive Learningという新しいフレームワークを構築した。
これらの2つの成分がクラスタリング性能に大きく寄与し、我々のモデルが最先端の手法よりも大きなマージンで優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2021-06-20T17:34:55Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
既存のコントラスト学習法は、非常に低い学習効率に苦しむ。
アンダークラスタリングとオーバークラスタリングの問題は、学習効率の大きな障害である。
中央三重項損失を用いた新しい自己監督学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-18T07:47:10Z) - Self-Supervised Classification Network [3.8073142980733]
自己監視型エンドツーエンド分類ニューラルネットワークはラベルと表現を同時に学習する。
大規模なImageNetデータセットでうまく機能する最初の監視されていないエンドツーエンドの分類ネットワーク。
論文 参考訳(メタデータ) (2021-03-19T19:29:42Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
教師なしクラスタリングのためのDual-AAE(Dual-AAE)を提案する。
Dual-AAEの目的関数に対する変分推論を行うことで,一対のオートエンコーダをトレーニングすることで最適化可能な新たな再構成損失を導出する。
4つのベンチマーク実験により、Dual-AAEは最先端のクラスタリング手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-23T13:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。