An Unsupervised Learning Classifier with Competitive Error Performance
- URL: http://arxiv.org/abs/1806.09385v3
- Date: Mon, 30 Sep 2024 12:51:27 GMT
- Title: An Unsupervised Learning Classifier with Competitive Error Performance
- Authors: Daniel N. Nissani,
- Abstract summary: The model is based on the incremental execution of small step shift and rotation operations upon selected discriminative hyperplanes.
When applied, in conjunction with a selected feature extractor, to a subset of the ImageNet dataset benchmark, it yields 6.2 % Top 3 probability of error.
This result may also be contrasted with popular unsupervised learning schemes such as k-Means which is shown to be practically useless on same dataset.
- Score: 0.0
- License:
- Abstract: An unsupervised learning classification model is described. It achieves classification error probability competitive with that of popular supervised learning classifiers such as SVM or kNN. The model is based on the incremental execution of small step shift and rotation operations upon selected discriminative hyperplanes at the arrival of input samples. When applied, in conjunction with a selected feature extractor, to a subset of the ImageNet dataset benchmark, it yields 6.2 % Top 3 probability of error; this exceeds by merely about 2 % the result achieved by (supervised) k-Nearest Neighbor, both using same feature extractor. This result may also be contrasted with popular unsupervised learning schemes such as k-Means which is shown to be practically useless on same dataset.
Related papers
- NorMatch: Matching Normalizing Flows with Discriminative Classifiers for
Semi-Supervised Learning [8.749830466953584]
Semi-Supervised Learning (SSL) aims to learn a model using a tiny labeled set and massive amounts of unlabeled data.
In this work we introduce a new framework for SSL named NorMatch.
We demonstrate, through numerical and visual results, that NorMatch achieves state-of-the-art performance on several datasets.
arXiv Detail & Related papers (2022-11-17T15:39:18Z) - Ensemble Classifier Design Tuned to Dataset Characteristics for Network
Intrusion Detection [0.0]
Two new algorithms are proposed to address the class overlap issue in the dataset.
The proposed design is evaluated for both binary and multi-category classification.
arXiv Detail & Related papers (2022-05-08T21:06:42Z) - On The Effectiveness of One-Class Support Vector Machine in Different Defect Prediction Scenarios [7.592094566354553]
Defect prediction aims at identifying software components that are likely to cause faults before a software is made available to the end-user.
Previous studies show that One-Class Support Vector Machine (OCSVM) can outperform two-class classifiers for within-project defect prediction.
We investigate whether learning from one class only is sufficient to produce effective defect prediction model in two other different scenarios.
arXiv Detail & Related papers (2022-02-24T12:57:14Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
Inherent to today's operating environment is the practice of adversarial machine learning.
In this work, we examine the feasibility of unsupervised learning and graph-based methods for anomaly detection.
We incorporate a realistic adversarial training mechanism when training our supervised models to enable strong classification performance in adversarial environments.
arXiv Detail & Related papers (2021-05-14T10:05:10Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Self-Supervised Classification Network [3.8073142980733]
Self-supervised end-to-end classification neural network learns labels and representations simultaneously.
First unsupervised end-to-end classification network to perform well on the large-scale ImageNet dataset.
arXiv Detail & Related papers (2021-03-19T19:29:42Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.