EBIC: an open source software for high-dimensional and big data biclustering analyses
- URL: http://arxiv.org/abs/1807.09932v2
- Date: Wed, 4 Sep 2024 17:25:52 GMT
- Title: EBIC: an open source software for high-dimensional and big data biclustering analyses
- Authors: Patryk Orzechowski, Jason H. Moore,
- Abstract summary: We present the latest release of EBIC, a next-generation biclustering algorithm for mining genetic data.
The major contribution of this paper is adding support for big data, making it possible to efficiently run large genomic data mining analyses.
EBIC was applied to datasets of different sizes, including a large DNA methylation dataset with 436,444 rows.
- Score: 2.863279092948239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivation: In this paper we present the latest release of EBIC, a next-generation biclustering algorithm for mining genetic data. The major contribution of this paper is adding support for big data, making it possible to efficiently run large genomic data mining analyses. Additional enhancements include integration with R and Bioconductor and an option to remove influence of missing value on the final result. Results: EBIC was applied to datasets of different sizes, including a large DNA methylation dataset with 436,444 rows. For the largest dataset we observed over 6.6 fold speedup in computation time on a cluster of 8 GPUs compared to running the method on a single GPU. This proves high scalability of the algorithm. Availability: The latest version of EBIC could be downloaded from http://github.com/EpistasisLab/ebic . Installation and usage instructions are also available online.
Related papers
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - EGG-GAE: scalable graph neural networks for tabular data imputation [8.775728170359024]
We propose a novel EdGe Generation Graph AutoEncoder (EGG-GAE) for missing data imputation.
EGG-GAE works on randomly sampled mini-batches of the input data, and it automatically infers the best connectivity across the mini-batch for each architecture layer.
arXiv Detail & Related papers (2022-10-19T10:26:17Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - EBIC.JL -- an Efficient Implementation of Evolutionary Biclustering
Algorithm in Julia [59.422301529692454]
We introduce EBIC.JL - an implementation of one of the most accurate biclustering algorithms in Julia.
We show that the new version maintains comparable accuracy to its predecessor EBIC while converging faster for the majority of the problems.
arXiv Detail & Related papers (2021-05-03T22:30:38Z) - Multidimensional Scaling for Gene Sequence Data with Autoencoders [0.0]
We present an autoencoder-based dimensional reduction model which can easily scale to datasets containing millions of gene sequences.
The proposed model is evaluated against DAMDS with a real world fungi gene sequence dataset.
arXiv Detail & Related papers (2021-04-19T02:14:17Z) - SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge
Graph Summarization [64.56399911605286]
We propose SumGNN: knowledge summarization graph neural network, which is enabled by a subgraph extraction module.
SumGNN outperforms the best baseline by up to 5.54%, and the performance gain is particularly significant in low data relation types.
arXiv Detail & Related papers (2020-10-04T00:14:57Z) - HeAT -- a Distributed and GPU-accelerated Tensor Framework for Data
Analytics [0.0]
HeAT is an array-based numerical programming framework for large-scale parallel processing with an easy-to-use NumPy-like API.
HeAT utilizes PyTorch as a node-local eager execution engine and distributes the workload on arbitrarily large high-performance computing systems via MPI.
When compared to similar frameworks, HeAT achieves speedups of up to two orders of magnitude.
arXiv Detail & Related papers (2020-07-27T13:33:17Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.