Elastic CRFs for Open-ontology Slot Filling
- URL: http://arxiv.org/abs/1811.01331v2
- Date: Wed, 29 May 2024 22:21:38 GMT
- Title: Elastic CRFs for Open-ontology Slot Filling
- Authors: Yinpei Dai, Yichi Zhang, Hong Liu, Zhijian Ou, Yi Huang, Junlan Feng,
- Abstract summary: Slot filling is a crucial component in task-oriented dialog systems that is used to parse (user) utterances into semantic concepts called slots.
We propose a new model called elastic conditional random field (eCRF) where each slot is represented by the embedding of its natural language description.
New slot values can be detected by eCRF whenever a language description is available for the slot.
- Score: 32.17803768259441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Slot filling is a crucial component in task-oriented dialog systems that is used to parse (user) utterances into semantic concepts called slots. An ontology is defined by the collection of slots and the values that each slot can take. The most widely used practice of treating slot filling as a sequence labeling task suffers from two main drawbacks. First, the ontology is usually pre-defined and fixed and therefore is not able to detect new labels for unseen slots. Second, the one-hot encoding of slot labels ignores the correlations between slots with similar semantics, which makes it difficult to share knowledge learned across different domains. To address these problems, we propose a new model called elastic conditional random field (eCRF), where each slot is represented by the embedding of its natural language description and modeled by a CRF layer. New slot values can be detected by eCRF whenever a language description is available for the slot. In our experiment, we show that eCRFs outperform existing models in both in-domain and cross-domain tasks, especially in predicting unseen slots and values.
Related papers
- OpenSlot: Mixed Open-set Recognition with Object-centric Learning [21.933996792254998]
Open-set recognition (OSR) studies typically assume that each image contains only one class label, and the unknown test set (negative) has a disjoint label space from the known test set (positive)
This paper introduces the mixed OSR problem, where test images contain multiple class semantics, with known and unknown classes co-occurring in negatives.
We propose the OpenSlot framework, built upon object-centric learning.
arXiv Detail & Related papers (2024-07-02T16:00:55Z) - Adaptive Slot Attention: Object Discovery with Dynamic Slot Number [64.45419820717754]
A major drawback of most object-centric models, including slot attention, is their reliance on predefining the number of slots.
Within this framework, we introduce an adaptive slot attention (AdaSlot) mechanism that dynamically determines the optimal number of slots.
Our framework, tested extensively on object discovery tasks with various datasets, shows performance matching or exceeding top fixed-slot models.
arXiv Detail & Related papers (2024-06-13T14:55:11Z) - Semantic Connectivity-Driven Pseudo-labeling for Cross-domain
Segmentation [89.41179071022121]
Self-training is a prevailing approach in cross-domain semantic segmentation.
We propose a novel approach called Semantic Connectivity-driven pseudo-labeling.
This approach formulates pseudo-labels at the connectivity level and thus can facilitate learning structured and low-noise semantics.
arXiv Detail & Related papers (2023-12-11T12:29:51Z) - HierarchicalContrast: A Coarse-to-Fine Contrastive Learning Framework
for Cross-Domain Zero-Shot Slot Filling [4.1940152307593515]
Cross-domain zero-shot slot filling plays a vital role in leveraging source domain knowledge to learn a model.
Existing state-of-the-art zero-shot slot filling methods have limited generalization ability in target domain.
We present a novel Hierarchical Contrastive Learning Framework (HiCL) for zero-shot slot filling.
arXiv Detail & Related papers (2023-10-13T14:23:33Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
Self-Supervised Learning (SSL) in model learning process and design a novel self-supervised Relation of Relation (R2) classification task.
Relation of Relation Learning Network (R2-Net) for text classification, in which text classification and R2 classification are treated as optimization targets.
external knowledge from WordNet to obtain multi-aspect descriptions for label semantic learning.
arXiv Detail & Related papers (2023-06-15T02:19:34Z) - Linguistically-Enriched and Context-Aware Zero-shot Slot Filling [6.06746295810681]
Slot filling is one of the most important challenges in modern task-oriented dialog systems.
New domains (i.e., unseen in training) may emerge after deployment.
It is imperative that models seamlessly adapt and fill slots from both seen and unseen domains.
arXiv Detail & Related papers (2021-01-16T20:18:16Z) - Constrained Decoding for Computationally Efficient Named Entity
Recognition Taggers [15.279850826041066]
Current work eschews prior knowledge of how the span encoding scheme works and relies on the conditional random field (CRF) learning which transitions are illegal and which are not to facilitate global coherence.
We find that by constraining the output to suppress illegal transitions we can train a tagger with a cross-entropy loss twice as fast as a CRF with differences in F1 that are statistically insignificant.
arXiv Detail & Related papers (2020-10-09T04:07:52Z) - Few-shot Slot Tagging with Collapsed Dependency Transfer and
Label-enhanced Task-adaptive Projection Network [61.94394163309688]
We propose a Label-enhanced Task-Adaptive Projection Network (L-TapNet) based on the state-of-the-art few-shot classification model -- TapNet.
Experimental results show that our model significantly outperforms the strongest few-shot learning baseline by 14.64 F1 scores in the one-shot setting.
arXiv Detail & Related papers (2020-06-10T07:50:44Z) - Coach: A Coarse-to-Fine Approach for Cross-domain Slot Filling [65.09621991654745]
Cross-domain slot filling is an essential task in task-oriented dialog systems.
We propose a Coarse-to-fine approach (Coach) for cross-domain slot filling.
Experimental results show that our model significantly outperforms state-of-the-art approaches in slot filling.
arXiv Detail & Related papers (2020-04-24T13:07:12Z) - Prior Knowledge Driven Label Embedding for Slot Filling in Natural
Language Understanding [28.71402670240912]
This paper proposes a novel label embedding based slot filling framework.
Three encoding methods are investigated to incorporate different kinds of prior knowledge about slots.
Experiments on single domain and domain adaptation tasks show that label embedding achieves significant performance improvement.
arXiv Detail & Related papers (2020-03-22T07:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.