Few-shot Slot Tagging with Collapsed Dependency Transfer and
Label-enhanced Task-adaptive Projection Network
- URL: http://arxiv.org/abs/2006.05702v1
- Date: Wed, 10 Jun 2020 07:50:44 GMT
- Title: Few-shot Slot Tagging with Collapsed Dependency Transfer and
Label-enhanced Task-adaptive Projection Network
- Authors: Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou, Yijia Liu, Han Liu,
Ting Liu
- Abstract summary: We propose a Label-enhanced Task-Adaptive Projection Network (L-TapNet) based on the state-of-the-art few-shot classification model -- TapNet.
Experimental results show that our model significantly outperforms the strongest few-shot learning baseline by 14.64 F1 scores in the one-shot setting.
- Score: 61.94394163309688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the slot tagging with only a few labeled support
sentences (a.k.a. few-shot). Few-shot slot tagging faces a unique challenge
compared to the other few-shot classification problems as it calls for modeling
the dependencies between labels. But it is hard to apply previously learned
label dependencies to an unseen domain, due to the discrepancy of label sets.
To tackle this, we introduce a collapsed dependency transfer mechanism into the
conditional random field (CRF) to transfer abstract label dependency patterns
as transition scores. In the few-shot setting, the emission score of CRF can be
calculated as a word's similarity to the representation of each label. To
calculate such similarity, we propose a Label-enhanced Task-Adaptive Projection
Network (L-TapNet) based on the state-of-the-art few-shot classification model
-- TapNet, by leveraging label name semantics in representing labels.
Experimental results show that our model significantly outperforms the
strongest few-shot learning baseline by 14.64 F1 scores in the one-shot
setting.
Related papers
- Online Multi-Label Classification under Noisy and Changing Label Distribution [9.17381554071824]
We propose an online multi-label classification algorithm under Noisy and Changing Label Distribution (NCLD)
The objective is to simultaneously model the label scoring and the label ranking for high accuracy, whose robustness to NCLD benefits from three novel works.
arXiv Detail & Related papers (2024-10-03T11:16:43Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
We study how false negative labels affect the model's explanation.
We propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels.
arXiv Detail & Related papers (2023-04-04T14:00:59Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
Training multi-label models with partial positive labels (MLR-PPL) attracts increasing attention.
Previous works regard unknown labels as negative and adopt traditional MLR algorithms.
We propose to explore semantic correlation among different images to facilitate the MLR-PPL task.
arXiv Detail & Related papers (2022-11-15T02:11:20Z) - Group is better than individual: Exploiting Label Topologies and Label
Relations for Joint Multiple Intent Detection and Slot Filling [39.76268402567324]
We construct a Heterogeneous Label Graph (HLG) containing two kinds of topologies.
Label correlations are leveraged to enhance semantic-label interactions.
We also propose the label-aware inter-dependent decoding mechanism to further exploit the label correlations for decoding.
arXiv Detail & Related papers (2022-10-19T08:21:43Z) - Towards Few-shot Entity Recognition in Document Images: A Label-aware
Sequence-to-Sequence Framework [28.898240725099782]
We build an entity recognition model requiring only a few shots of annotated document images.
We develop a novel label-aware seq2seq framework, LASER.
Experiments on two benchmark datasets demonstrate the superiority of LASER under the few-shot setting.
arXiv Detail & Related papers (2022-03-30T18:30:42Z) - Structured Semantic Transfer for Multi-Label Recognition with Partial
Labels [85.6967666661044]
We propose a structured semantic transfer (SST) framework that enables training multi-label recognition models with partial labels.
The framework consists of two complementary transfer modules that explore within-image and cross-image semantic correlations.
Experiments on the Microsoft COCO, Visual Genome and Pascal VOC datasets show that the proposed SST framework obtains superior performance over current state-of-the-art algorithms.
arXiv Detail & Related papers (2021-12-21T02:15:01Z) - Enhancing Label Correlation Feedback in Multi-Label Text Classification
via Multi-Task Learning [6.1538971100140145]
We introduce a novel approach with multi-task learning to enhance label correlation feedback.
We propose two auxiliary label co-occurrence prediction tasks to enhance label correlation learning.
arXiv Detail & Related papers (2021-06-06T12:26:14Z) - Few-shot Learning for Multi-label Intent Detection [59.66787898744991]
State-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels.
Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
arXiv Detail & Related papers (2020-10-11T14:42:18Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
This paper formulates unsupervised person ReID as a multi-label classification task to progressively seek true labels.
Our method starts by assigning each person image with a single-class label, then evolves to multi-label classification by leveraging the updated ReID model for label prediction.
To boost the ReID model training efficiency in multi-label classification, we propose the memory-based multi-label classification loss (MMCL)
arXiv Detail & Related papers (2020-04-20T12:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.