Incentivizing Exploration with Selective Data Disclosure
- URL: http://arxiv.org/abs/1811.06026v7
- Date: Wed, 13 Nov 2024 01:28:11 GMT
- Title: Incentivizing Exploration with Selective Data Disclosure
- Authors: Nicole Immorlica, Jieming Mao, Aleksandrs Slivkins, Zhiwei Steven Wu,
- Abstract summary: We propose and design recommendation systems that incentivize efficient exploration.
Agents arrive sequentially, choose actions and receive rewards, drawn from fixed but unknown action-specific distributions.
We attain optimal regret rate for exploration using a flexible frequentist behavioral model.
- Score: 70.11902902106014
- License:
- Abstract: We propose and design recommendation systems that incentivize efficient exploration. Agents arrive sequentially, choose actions and receive rewards, drawn from fixed but unknown action-specific distributions. The recommendation system presents each agent with actions and rewards from a subsequence of past agents, chosen ex ante. Thus, the agents engage in sequential social learning, moderated by these subsequences. We asymptotically attain optimal regret rate for exploration, using a flexible frequentist behavioral model and mitigating rationality and commitment assumptions inherent in prior work. We suggest three components of effective recommendation systems: independent focus groups, group aggregators, and interlaced information structures.
Related papers
- Estimating and Incentivizing Imperfect-Knowledge Agents with Hidden
Rewards [4.742123770879715]
In practice, incentive providers often cannot observe the reward realizations of incentivized agents.
This paper explores a repeated adverse selection game between a self-interested learning agent and a learning principal.
We introduce an estimator whose only input is the history of principal's incentives and agent's choices.
arXiv Detail & Related papers (2023-08-13T08:12:01Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
reinforcement learning algorithms can be used to optimize user engagement in recommender systems.
However, RL approaches are intractable in the slate recommendation scenario.
In that setting, an action corresponds to a slate that may contain any combination of items.
In this work we propose to encode slates in a continuous, low-dimensional latent space learned by a variational auto-encoder.
We are able to (i) relax assumptions required by previous work, and (ii) improve the quality of the action selection by modeling full slates.
arXiv Detail & Related papers (2023-01-20T15:28:09Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
We propose a novel recommender system that aligns with agents' incentives while achieving myopically optimal performance.
Our framework models this incentive-aware system as a multi-agent bandit problem in two-sided markets.
Both algorithms satisfy an ex-post fairness criterion, which protects agents from over-exploitation.
arXiv Detail & Related papers (2022-11-23T22:20:12Z) - Incentivizing Combinatorial Bandit Exploration [87.08827496301839]
Consider a bandit algorithm that recommends actions to self-interested users in a recommendation system.
Users are free to choose other actions and need to be incentivized to follow the algorithm's recommendations.
While the users prefer to exploit, the algorithm can incentivize them to explore by leveraging the information collected from the previous users.
arXiv Detail & Related papers (2022-06-01T13:46:25Z) - Long-term Dynamics of Fairness Intervention in Connection Recommender
Systems [5.048563042541915]
We study a connection recommender system patterned after the systems employed by web-scale social networks.
We find that, although seemingly fair in aggregate, common exposure and utility parity interventions fail to mitigate amplification of biases in the long term.
arXiv Detail & Related papers (2022-03-30T16:27:48Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
This paper proposes a deep reinforcement learning based recommendation system by utilizing Actor-Critic architecture.
The proposed model is able to generate a diverse while relevance recommendation list based on the user's preferences.
arXiv Detail & Related papers (2021-10-28T13:11:29Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.