Long-term Dynamics of Fairness Intervention in Connection Recommender
Systems
- URL: http://arxiv.org/abs/2203.16432v4
- Date: Tue, 20 Sep 2022 16:59:49 GMT
- Title: Long-term Dynamics of Fairness Intervention in Connection Recommender
Systems
- Authors: Nil-Jana Akpinar, Cyrus DiCiccio, Preetam Nandy, Kinjal Basu
- Abstract summary: We study a connection recommender system patterned after the systems employed by web-scale social networks.
We find that, although seemingly fair in aggregate, common exposure and utility parity interventions fail to mitigate amplification of biases in the long term.
- Score: 5.048563042541915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender system fairness has been studied from the perspectives of a
variety of stakeholders including content producers, the content itself and
recipients of recommendations. Regardless of which type of stakeholders are
considered, most works in this area assess the efficacy of fairness
intervention by evaluating a single fixed fairness criterion through the lens
of a one-shot, static setting. Yet recommender systems constitute dynamical
systems with feedback loops from the recommendations to the underlying
population distributions which could lead to unforeseen and adverse
consequences if not taken into account. In this paper, we study a connection
recommender system patterned after the systems employed by web-scale social
networks and analyze the long-term effects of intervening on fairness in the
recommendations. We find that, although seemingly fair in aggregate, common
exposure and utility parity interventions fail to mitigate amplification of
biases in the long term. We theoretically characterize how certain fairness
interventions impact the bias amplification dynamics in a stylized P\'{o}lya
urn model.
Related papers
- Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
A small set of popular items dominate the recommendation results due to their high interaction rates.
This phenomenon disproportionately benefits users with mainstream tastes while neglecting those with niche interests.
We propose an in-processing approach to address this issue by intervening in the training process of recommendation models.
arXiv Detail & Related papers (2024-10-07T08:34:18Z) - Measuring Recency Bias In Sequential Recommendation Systems [4.797371814812293]
Recency bias in a sequential recommendation system refers to the overly high emphasis placed on recent items within a user session.
This bias can diminish the serendipity of recommendations and hinder the system's ability to capture users' long-term interests.
We propose a simple yet effective novel metric specifically designed to quantify recency bias.
arXiv Detail & Related papers (2024-09-15T13:02:50Z) - Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference [50.95521705711802]
Previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model.
This paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference.
We propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect.
arXiv Detail & Related papers (2024-04-30T15:20:41Z) - Ensuring User-side Fairness in Dynamic Recommender Systems [37.20838165555877]
This paper presents the first principled study on ensuring user-side fairness in dynamic recommender systems.
We propose FAir Dynamic rEcommender (FADE), an end-to-end fine-tuning framework to dynamically ensure user-side fairness over time.
We show that FADE effectively and efficiently reduces performance disparities with little sacrifice in the overall recommendation performance.
arXiv Detail & Related papers (2023-08-29T22:03:17Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
This paper formalizes a family of exposure fairness metrics that model the problem jointly from the perspective of both the consumers and producers.
Specifically, we consider group attributes for both types of stakeholders to identify and mitigate fairness concerns that go beyond individual users and items towards more systemic biases in recommendation.
arXiv Detail & Related papers (2022-04-29T19:13:23Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
A new trend in recommender system research is to negate the influence of confounders from a causal perspective.
We model the recommendation as a multi-cause multi-outcome (MCMO) inference problem.
We show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space.
arXiv Detail & Related papers (2022-01-06T15:00:01Z) - "And the Winner Is...": Dynamic Lotteries for Multi-group Fairness-Aware
Recommendation [37.35485045640196]
We argue that the previous literature has been based on simple, uniform and often uni-dimensional notions of fairness assumptions.
We explicitly represent the design decisions that enter into the trade-off between accuracy and fairness across multiply-defined and intersecting protected groups.
We formulate lottery-based mechanisms for choosing between fairness concerns, and demonstrate their performance in two recommendation domains.
arXiv Detail & Related papers (2020-09-05T20:15:14Z) - Counterfactual Evaluation of Slate Recommendations with Sequential
Reward Interactions [18.90946044396516]
Music streaming, video streaming, news recommendation, and e-commerce services often engage with content in a sequential manner.
Providing and evaluating good sequences of recommendations is therefore a central problem for these services.
We propose a new counterfactual estimator that allows for sequential interactions in the rewards with lower variance in anally unbiased manner.
arXiv Detail & Related papers (2020-07-25T17:58:01Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - Incentivizing Exploration with Selective Data Disclosure [70.11902902106014]
We propose and design recommendation systems that incentivize efficient exploration.
Agents arrive sequentially, choose actions and receive rewards, drawn from fixed but unknown action-specific distributions.
We attain optimal regret rate for exploration using a flexible frequentist behavioral model.
arXiv Detail & Related papers (2018-11-14T19:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.