Trading T gates for dirty qubits in state preparation and unitary synthesis
- URL: http://arxiv.org/abs/1812.00954v2
- Date: Tue, 11 Jun 2024 21:32:14 GMT
- Title: Trading T gates for dirty qubits in state preparation and unitary synthesis
- Authors: Guang Hao Low, Vadym Kliuchnikov, Luke Schaeffer,
- Abstract summary: We present a quantum algorithm for preparing any dimension-$N$ pure quantum state specified by a list of $N$ classical numbers.
Our scheme uses $mathcalO(fracNlambda+lambdalogfracNepsilonlogfraclogNepsilon)$ to reduce the T-gate cost to $mathcalO(fracNlambda+lambdalogfracNepsilonlogfraclogNepsilon)$
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient synthesis of arbitrary quantum states and unitaries from a universal fault-tolerant gate-set e.g. Clifford+T is a key subroutine in quantum computation. As large quantum algorithms feature many qubits that encode coherent quantum information but remain idle for parts of the computation, these should be used if it minimizes overall gate counts, especially that of the expensive T-gates. We present a quantum algorithm for preparing any dimension-$N$ pure quantum state specified by a list of $N$ classical numbers, that realizes a trade-off between space and T-gates. Our scheme uses $\mathcal{O}(\log{(N/\epsilon)})$ clean qubits and a tunable number of $\sim(\lambda\log{(\frac{\log{N}}{\epsilon})})$ dirty qubits, to reduce the T-gate cost to $\mathcal{O}(\frac{N}{\lambda}+\lambda\log{\frac{N}{\epsilon}}\log{\frac{\log{N}}{\epsilon}})$. This trade-off is optimal up to logarithmic factors, proven through an unconditional gate counting lower bound, and is, in the best case, a quadratic improvement in T-count over prior ancillary-free approaches. We prove similar statements for unitary synthesis by reduction to state preparation. Underlying our constructions is a T-efficient circuit implementation of a quantum oracle for arbitrary classical data.
Related papers
- Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - Circuit Complexity of Sparse Quantum State Preparation [0.0]
We show that any $n$-qubit $d$-sparse quantum state can be prepared by a quantum circuit of size $O(fracdnlog d)$ and depth $Theta(log dn)$ using at most $O(fracndlog d )$ ancillary qubits.
We also establish the lower bound $Omega(fracdnlog(n + m) + log d + n)$ on the circuit size with $m$ ancillary qubits available.
arXiv Detail & Related papers (2024-06-23T15:28:20Z) - Efficient Fault-Tolerant Single Qubit Gate Approximation And Universal Quantum Computation Without Using The Solovay-Kitaev Theorem [0.0]
A recent improvement of the Solovay-Kitaev theorem implies that to approximate any single-qubit gate to an accuracy of $epsilon > 0$ requires $textO(logc[1/epsilon)$ quantum gates with $c > 1.44042$.
Here I give a partial answer to this question by showing that this is possible using $textO(log[/epsilon] loglog[/epsilon] cdots)$ FT gates chosen from a finite set depending on the value of $
arXiv Detail & Related papers (2024-06-07T11:21:05Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Space-Efficient and Noise-Robust Quantum Factoring [10.974556218898435]
We improve Regev's recent quantum factoring algorithm (arXiv:2308.06572)
We run our circuit independently $approx sqrtn$ times and applies Regev's classical postprocessing procedure.
Our second contribution is to show that Regev's classical postprocessing procedure can be modified to tolerate a constant fraction of the quantum circuit runs being corrupted by errors.
arXiv Detail & Related papers (2023-10-02T04:31:21Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Halving the cost of quantum multiplexed rotations [0.0]
We improve the number of $T$ gates needed for a $b$-bit approximation of a multiplexed quantum gate with $c$ controls.
Our results roughly halve the cost of state-of-art electronic structure simulations based on qubitization of double-factorized or tensor-hypercontracted representations.
arXiv Detail & Related papers (2021-10-26T06:49:44Z) - A polynomial time and space heuristic algorithm for T-count [2.28438857884398]
This work focuses on reducing the physical cost of implementing quantum algorithms when using the state-of-the-art fault-tolerant quantum error correcting codes.
We consider the group of unitaries that can be exactly implemented by a quantum circuit consisting of the Clifford+T gate set, a universal gate set.
arXiv Detail & Related papers (2020-06-22T17:21:41Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.