Quantum Resources Required to Block-Encode a Matrix of Classical Data
- URL: http://arxiv.org/abs/2206.03505v1
- Date: Tue, 7 Jun 2022 18:00:01 GMT
- Title: Quantum Resources Required to Block-Encode a Matrix of Classical Data
- Authors: B. David Clader, Alexander M. Dalzell, Nikitas Stamatopoulos, Grant
Salton, Mario Berta, and William J. Zeng
- Abstract summary: We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
- Score: 56.508135743727934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide modular circuit-level implementations and resource estimates for
several methods of block-encoding a dense $N\times N$ matrix of classical data
to precision $\epsilon$; the minimal-depth method achieves a $T$-depth of
$\mathcal{O}{(\log (N/\epsilon))},$ while the minimal-count method achieves a
$T$-count of $\mathcal{O}{(N\log(1/\epsilon))}$. We examine resource tradeoffs
between the different approaches, and we explore implementations of two
separate models of quantum random access memory (QRAM). As part of this
analysis, we provide a novel state preparation routine with $T$-depth
$\mathcal{O}{(\log (N/\epsilon))}$, improving on previous constructions with
scaling $\mathcal{O}{(\log^2 (N/\epsilon))}$. Our results go beyond simple
query complexity and provide a clear picture into the resource costs when large
amounts of classical data are assumed to be accessible to quantum algorithms.
Related papers
- Quantum option pricing via the Karhunen-Lo\`{e}ve expansion [11.698830761241107]
We consider the problem of pricing discretely monitored Asian options over $T$ monitoring points where the underlying asset is modeled by a geometric Brownian motion.
We provide two quantum algorithms with complexity poly-logarithmic in $T$ and in $1/epsilon$, where $epsilon$ is the additive approximation error.
arXiv Detail & Related papers (2024-02-15T17:37:23Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Mind the $\tilde{\mathcal{O}}$: Asymptotically Better, but Still
Impractical, Quantum Distributed Algorithms [0.0]
We present two algorithms in the Quantum CONGEST-CLIQUE model of distributed computation that succeed with high probability.
The algorithms achieve a lower round and message complexity than any known algorithms in the classical CONGEST-CLIQUE model.
An existing framework for using distributed version of Grover's search algorithm to accelerate triangle finding lies at the core of the speedup.
arXiv Detail & Related papers (2023-04-06T02:18:52Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - How to simulate quantum measurement without computing marginals [3.222802562733787]
We describe and analyze algorithms for classically computation measurement of an $n$-qubit quantum state $psi$ in the standard basis.
Our algorithms reduce the sampling task to computing poly(n)$ amplitudes of $n$-qubit states.
arXiv Detail & Related papers (2021-12-15T21:44:05Z) - Improved quantum data analysis [1.8416014644193066]
We give a quantum "Threshold Search" algorithm that requires only $O(log2 m)/epsilon2)$ samples of a $d$-dimensional state.
We also give an alternative Hypothesis Selection method using $tildeO((log3 m)/epsilon2)$ samples.
arXiv Detail & Related papers (2020-11-22T01:22:37Z) - Quantum-classical algorithms for skewed linear systems with optimized
Hadamard test [10.386115383285288]
We discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and under-determined cases.
Our input model is such that the columns or rows of the matrix defining the linear system are given via quantum circuits of poly-logarithmic depth.
We present an algorithm for the special case of a factorized linear system with run time poly-logarithmic in the respective dimensions.
arXiv Detail & Related papers (2020-09-28T12:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.