論文の概要: Word Embeddings: A Survey
- arxiv url: http://arxiv.org/abs/1901.09069v2
- Date: Tue, 2 May 2023 02:32:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 18:49:16.045063
- Title: Word Embeddings: A Survey
- Title(参考訳): Word Embeddings: 調査
- Authors: Felipe Almeida and Geraldo Xex\'eo
- Abstract要約: この研究は、単語の固定長、密度、分散表現を構築するための最近の主要な戦略をリストし、記述する。
これらの表現は、現在ではワード埋め込みと呼ばれており、驚くほど優れた構文情報や意味情報を符号化することに加えて、多くの下流のNLPタスクで有用であることが証明されている。
- 参考スコア(独自算出の注目度): 1.2691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work lists and describes the main recent strategies for building
fixed-length, dense and distributed representations for words, based on the
distributional hypothesis. These representations are now commonly called word
embeddings and, in addition to encoding surprisingly good syntactic and
semantic information, have been proven useful as extra features in many
downstream NLP tasks.
- Abstract(参考訳): 本研究は, 分布仮説に基づいて, 単語の固定長, 高密度, 分散表現を構築するための最近の戦略をリストアップし, 解説する。
これらの表現は一般に単語埋め込みと呼ばれ、驚くほど優れた構文や意味情報をエンコーディングするだけでなく、多くの下流のnlpタスクで追加の機能として有用であることが証明されている。
関連論文リスト
- How well do distributed representations convey contextual lexical semantics: a Thesis Proposal [3.3585951129432323]
本稿では,現代ニューラルネットワークによる語彙意味の符号化における分散表現の有効性について検討する。
文脈に影響された意味の関連性と類似性に基づいて,曖昧さの4つの源を同定する。
次に、多言語データセットの収集や構築、様々な言語モデルの利用、言語解析ツールの利用により、これらの情報源を評価することを目的とする。
論文 参考訳(メタデータ) (2024-06-02T14:08:51Z) - Conjunct Resolution in the Face of Verbal Omissions [51.220650412095665]
本稿では,テキスト上で直接動作する接続分解タスクを提案し,コーディネーション構造に欠けている要素を復元するために,分割・言い換えパラダイムを利用する。
クラウドソースアノテーションによる自然に発生する動詞の省略例を10万件以上を含む,大規模なデータセットをキュレートする。
我々は、このタスクのために様々な神経ベースラインをトレーニングし、最良の手法が適切なパフォーマンスを得る一方で、改善のための十分なスペースを残していることを示す。
論文 参考訳(メタデータ) (2023-05-26T08:44:02Z) - A Comprehensive Empirical Evaluation of Existing Word Embedding
Approaches [5.065947993017158]
既存の単語埋め込み手法の特徴を概説し,多くの分類タスクについて解析する。
伝統的なアプローチでは、主に単語表現を生成するために行列分解を使い、言語の意味的および構文的規則性をうまく捉えることができない。
一方、ニューラルネットワークに基づくアプローチは、言語の洗練された規則性を捕捉し、生成した単語表現における単語関係を保存することができる。
論文 参考訳(メタデータ) (2023-03-13T15:34:19Z) - Clustering and Network Analysis for the Embedding Spaces of Sentences
and Sub-Sentences [69.3939291118954]
本稿では,文とサブ文の埋め込みを対象とする包括的クラスタリングとネットワーク解析について検討する。
その結果,1つの手法が最もクラスタリング可能な埋め込みを生成することがわかった。
一般に、スパン部分文の埋め込みは、原文よりもクラスタリング特性が優れている。
論文 参考訳(メタデータ) (2021-10-02T00:47:35Z) - Deriving Word Vectors from Contextualized Language Models using
Topic-Aware Mention Selection [46.97185212695267]
本稿では,この基本戦略に従って単語表現を学習する手法を提案する。
我々は、文脈を符号化するワードベクトルの袋ではなく、文脈化された言語モデル(CLM)を利用する。
この単純な戦略は、単語埋め込みや既存のCLMベースの戦略よりも意味的特性をより予測し、高品質な単語ベクトルに繋がることを示す。
論文 参考訳(メタデータ) (2021-06-15T08:02:42Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
本稿では,視覚指導から従来の単語埋め込みを視覚的に強調する視覚的表現法を提案する。
各単語が多様な関連画像に対応するマルチモーダルシードデータセットから,小型の単語画像辞書を構築する。
12の自然言語理解および機械翻訳タスクの実験により,提案手法の有効性と一般化能力がさらに検証された。
論文 参考訳(メタデータ) (2020-12-30T09:11:50Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Deconstructing word embedding algorithms [17.797952730495453]
我々は、最もよく知られた単語埋め込みアルゴリズムのいくつかについて振り返りを提案する。
本研究では,Word2vec,GloVe,その他を共通形式に分解し,実演語埋め込みに必要な共通条件を明らかにした。
論文 参考訳(メタデータ) (2020-11-12T14:23:35Z) - A Comparative Study on Structural and Semantic Properties of Sentence
Embeddings [77.34726150561087]
本稿では,関係抽出に広く利用されている大規模データセットを用いた実験セットを提案する。
異なる埋め込み空間は、構造的および意味的特性に対して異なる強度を持つことを示す。
これらの結果は,埋め込み型関係抽出法の開発に有用な情報を提供する。
論文 参考訳(メタデータ) (2020-09-23T15:45:32Z) - Supervised Understanding of Word Embeddings [1.160208922584163]
単語埋め込みにおける線形キーワードレベル分類器の形で教師付きプロジェクションを得た。
我々は,本手法が元の埋め込み次元の解釈可能な投影を生成することを示した。
論文 参考訳(メタデータ) (2020-06-23T20:13:42Z) - Spying on your neighbors: Fine-grained probing of contextual embeddings
for information about surrounding words [12.394077144994617]
本稿では,周辺単語の情報エンコーディングのためのコンテキスト埋め込みのきめ細かいテストを可能にする探索タスクのスイートを紹介する。
我々は、人気のあるBERT、ELMoおよびGPTコンテキストエンコーダを調べ、テストされた情報型が実際にトークン間でコンテキスト情報としてエンコードされていることを発見した。
トークン埋め込みを構築する際に,異なる種類のモデルがどのように分解し,単語レベルのコンテキスト情報を優先するかについて,これらの結果の意味を論じる。
論文 参考訳(メタデータ) (2020-05-04T19:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。