論文の概要: Certified Reinforcement Learning with Logic Guidance
- arxiv url: http://arxiv.org/abs/1902.00778v4
- Date: Tue, 6 Jun 2023 15:52:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 00:27:05.777908
- Title: Certified Reinforcement Learning with Logic Guidance
- Title(参考訳): 論理指導による認証強化学習
- Authors: Hosein Hasanbeig, Daniel Kroening, Alessandro Abate
- Abstract要約: 線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
- 参考スコア(独自算出の注目度): 78.2286146954051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) is a widely employed machine learning
architecture that has been applied to a variety of control problems. However,
applications in safety-critical domains require a systematic and formal
approach to specifying requirements as tasks or goals. We propose a model-free
RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a
goal for unknown continuous-state/action Markov Decision Processes (MDPs). The
given LTL property is translated into a Limit-Deterministic Generalised Buchi
Automaton (LDGBA), which is then used to shape a synchronous reward function
on-the-fly. Under certain assumptions, the algorithm is guaranteed to
synthesise a control policy whose traces satisfy the LTL specification with
maximal probability.
- Abstract(参考訳): 強化学習(rl)は、さまざまな制御問題に適用された、広く使用されている機械学習アーキテクチャである。
しかしながら、安全クリティカルなドメインのアプリケーションは、要求をタスクや目標として指定するための体系的で形式的なアプローチを必要とする。
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
与えられたLTL特性は、リミット決定論的一般化Buchi Automaton (LDGBA) に変換され、その後、オンザフライで同期報酬関数を形成する。
特定の仮定の下では、アルゴリズムは最大確率でltl仕様を満たすトレースを持つ制御ポリシーを合成することが保証される。
関連論文リスト
- DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications [59.01527054553122]
リニア時間論理(LTL)は、強化学習(RL)における複雑で時間的に拡張されたタスクを特定する強力なフォーマリズムとして最近採用されている。
既存のアプローチはいくつかの欠点に悩まされており、それらは有限水平フラグメントにのみ適用でき、最適以下の解に制限され、安全制約を適切に扱えない。
本研究では,これらの問題に対処するための新しい学習手法を提案する。
提案手法は, 自動仕様のセマンティクスを明示的に表現したB"uchiaの構造を利用して, 所望の式を満たすための真理代入の順序を条件としたポリシーを学習する。
論文 参考訳(メタデータ) (2024-10-06T21:30:38Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
リニア時間論理(LTL)は強化学習におけるタスク仕様のための強力な言語である。
合成された報酬信号は基本的に疎結合であり,探索が困難であることを示す。
我々は、仕様をさらに活用し、それに対応するリミット決定性B"uchi Automaton(LDBA)をマルコフ報酬プロセスとしてキャストすることで、よりよい探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-08-18T14:25:44Z) - Signal Temporal Logic Neural Predictive Control [15.540490027770621]
本稿では,信号時相論理(STL)に規定される要件を満たすためにニューラルネットワークコントローラを学習する手法を提案する。
我々のコントローラは、トレーニングにおけるSTLロバストネススコアを最大化するために軌道のロールアウトを学習する。
バックアップポリシは、コントローラがフェールした場合の安全性を保証するように設計されています。
論文 参考訳(メタデータ) (2023-09-10T20:31:25Z) - LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement
Learning [78.2286146954051]
LCRLは未知決定プロセス(MDP)上でのモデルフリー強化学習(RL)アルゴリズムを実装している
本稿では,LCRLの適用性,使いやすさ,拡張性,性能を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2022-09-21T13:21:00Z) - Accelerated Reinforcement Learning for Temporal Logic Control Objectives [10.216293366496688]
本稿では,未知マルコフ決定過程(MDP)をモデル化した移動ロボットの学習制御ポリシーの問題に対処する。
本稿では,制御ポリシを関連手法よりもはるかに高速に学習可能な制御対象に対するモデルベース強化学習(RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-09T17:09:51Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
強化学習(Reinforcement Learning, RL)は,現実のアプリケーションに対して限られた成功を収める,有望なアプローチである。
本稿では,複数の側面からなる学習型制御フレームワークを提案する。
ECBFをベースとしたモジュラーディープRLアルゴリズムは,ほぼ完全な成功率を達成し,高い確率で安全性を保護することを示す。
論文 参考訳(メタデータ) (2021-09-07T00:51:12Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
本稿では,マルコフ決定過程(MDP)をモデルとした自律動的システムの運動計画について検討する。
LDGBA と MDP の間に組込み製品 MDP (EP-MDP) を設計することである。
モデルフリー強化学習(RL)のためのLDGBAベースの報酬形成と割引スキームは、EP-MDP状態にのみ依存する。
論文 参考訳(メタデータ) (2021-02-24T01:11:25Z) - Reinforcement Learning Based Temporal Logic Control with Maximum
Probabilistic Satisfaction [5.337302350000984]
本稿では,制御ポリシを合成するモデルレス強化学習アルゴリズムを提案する。
RLをベースとした制御合成の有効性をシミュレーションおよび実験により実証した。
論文 参考訳(メタデータ) (2020-10-14T03:49:16Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。