論文の概要: A new Potential-Based Reward Shaping for Reinforcement Learning Agent
- arxiv url: http://arxiv.org/abs/1902.06239v3
- Date: Mon, 13 Mar 2023 22:08:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-25 04:41:08.998747
- Title: A new Potential-Based Reward Shaping for Reinforcement Learning Agent
- Title(参考訳): 強化学習エージェントのためのポテンシャルベース逆整形
- Authors: Babak Badnava, Mona Esmaeili, Nasser Mozayani, and Payman Zarkesh-Ha
- Abstract要約: 提案手法はエピソードの累積報酬から知識を抽出する。
その結果,シングルタスクとマルチタスク強化学習エージェントの学習プロセスの改善が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Potential-based reward shaping (PBRS) is a particular category of machine
learning methods which aims to improve the learning speed of a reinforcement
learning agent by extracting and utilizing extra knowledge while performing a
task. There are two steps in the process of transfer learning: extracting
knowledge from previously learned tasks and transferring that knowledge to use
it in a target task. The latter step is well discussed in the literature with
various methods being proposed for it, while the former has been explored less.
With this in mind, the type of knowledge that is transmitted is very important
and can lead to considerable improvement. Among the literature of both the
transfer learning and the potential-based reward shaping, a subject that has
never been addressed is the knowledge gathered during the learning process
itself. In this paper, we presented a novel potential-based reward shaping
method that attempted to extract knowledge from the learning process. The
proposed method extracts knowledge from episodes' cumulative rewards. The
proposed method has been evaluated in the Arcade learning environment and the
results indicate an improvement in the learning process in both the single-task
and the multi-task reinforcement learner agents.
- Abstract(参考訳): PBRS(英: potential-based reward shaping)は、強化学習エージェントの学習速度の向上を目的とした機械学習手法の一種であり、タスクの実行中に余分な知識を抽出して活用することを目的としている。
トランスファー学習のプロセスには2つのステップがある: 事前に学習したタスクから知識を抽出し、その知識をターゲットタスクで使用するために転送する。
後者のステップは、文献において様々な方法が提案されているが、前者の調査は少ない。
このことを念頭に置いて、伝達される知識の種類は非常に重要であり、大幅な改善につながる可能性がある。
トランスファーラーニングとポテンシャルに基づく報酬形成の両方の文献の中で、未解決の課題は、学習プロセス自体に集められた知識である。
本稿では,学習過程から知識を抽出する新たなポテンシャルに基づく報酬形成手法を提案する。
提案手法はエピソードの累積報酬から知識を抽出する。
提案手法は, アーケード学習環境において評価され, シングルタスクとマルチタスク強化学習エージェントの両方において, 学習プロセスの改善が示されている。
関連論文リスト
- Exploring CausalWorld: Enhancing robotic manipulation via knowledge transfer and curriculum learning [6.683222869973898]
本研究では,指間の複雑な動きと協調を必要とする,学習に基づく三指ロボットアーム操作タスクについて検討する。
強化学習を利用することで、エージェントに熟練した操作に必要なスキルを習得するよう訓練する。
微調整とカリキュラム学習という2つの知識伝達戦略を,ソフトアクター・クリティカルなアーキテクチャで活用した。
論文 参考訳(メタデータ) (2024-03-25T23:19:19Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - Learning with Recoverable Forgetting [77.56338597012927]
学習wIth Recoverable Forgettingは、タスクまたはサンプル固有の知識の除去とリカバリを明示的に処理する。
具体的には、LIRFは2つの革新的なスキーム、すなわち知識預金と離脱をもたらす。
いくつかのデータセットで実験を行い、提案したLIRF戦略が一般化能力を満足させる結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-07-17T16:42:31Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
知識を習得し再利用する能力は、ディープラーニングにおける伝達可能性として知られている。
本研究は,深層学習における異なる孤立領域と伝達可能性との関係を関連付けるための調査である。
我々はベンチマークとオープンソースライブラリを実装し、転送可能性の観点からディープラーニング手法の公平な評価を可能にする。
論文 参考訳(メタデータ) (2022-01-15T15:03:17Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
本稿では,2段階の学習フレームワークである経験連続再生(ERR)を提案する。
ERRは、すべてのベースラインの性能を一貫して改善し、現在の最先端の手法を超えることができる。
論文 参考訳(メタデータ) (2021-12-31T12:05:22Z) - A Survey of Exploration Methods in Reinforcement Learning [64.01676570654234]
強化学習エージェントは、学習プロセスのための情報データを得るために、探索に極めて依存する。
本稿では,(逐次的)強化学習における近代的な探究手法の調査と,探索手法の分類について述べる。
論文 参考訳(メタデータ) (2021-09-01T02:36:14Z) - KnowRU: Knowledge Reusing via Knowledge Distillation in Multi-agent
Reinforcement Learning [16.167201058368303]
深層強化学習(RL)アルゴリズムはマルチエージェント領域において劇的に進歩している。
この問題を解決するには、歴史的経験の効率的な活用が不可欠です。
知識再利用のための「KnowRU」という手法を提案する。
論文 参考訳(メタデータ) (2021-03-27T12:38:01Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
強化学習は、シーケンシャルな意思決定問題を解決するための学習パラダイムである。
近年、ディープニューラルネットワークの急速な発展により、強化学習の顕著な進歩が見られた。
転校学習は 強化学習が直面する様々な課題に 対処するために生まれました
論文 参考訳(メタデータ) (2020-09-16T18:38:54Z) - Learning Transferable Concepts in Deep Reinforcement Learning [0.7161783472741748]
感覚入力の離散的な表現を学習することで、複数のタスクに共通するハイレベルな抽象化が得られることを示す。
特に,情報理論のアプローチに従って,自己超越によってそのような表現を学習することは可能であることを示す。
本手法は, 未知タスクと未知タスクの両方において, サンプル効率を高めるための, 機関車および最適制御タスクの概念を学習することができる。
論文 参考訳(メタデータ) (2020-05-16T04:45:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。