Model-Based Reinforcement Learning for Atari
- URL: http://arxiv.org/abs/1903.00374v5
- Date: Wed, 3 Apr 2024 14:26:32 GMT
- Title: Model-Based Reinforcement Learning for Atari
- Authors: Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, Henryk Michalewski,
- Abstract summary: We show how video prediction models can enable agents to solve Atari games with fewer interactions than model-free methods.
Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment.
- Score: 89.3039240303797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-free reinforcement learning (RL) can be used to learn effective policies for complex tasks, such as Atari games, even from image observations. However, this typically requires very large amounts of interaction -- substantially more, in fact, than a human would need to learn the same games. How can people learn so quickly? Part of the answer may be that people can learn how the game works and predict which actions will lead to desirable outcomes. In this paper, we explore how video prediction models can similarly enable agents to solve Atari games with fewer interactions than model-free methods. We describe Simulated Policy Learning (SimPLe), a complete model-based deep RL algorithm based on video prediction models and present a comparison of several model architectures, including a novel architecture that yields the best results in our setting. Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment, which corresponds to two hours of real-time play. In most games SimPLe outperforms state-of-the-art model-free algorithms, in some games by over an order of magnitude.
Related papers
- Mutual Learning for Finetuning Click-Through Rate Prediction Models [0.0]
In this paper, we show how useful the mutual learning algorithm could be when it is between equals.
In our experiments on the Criteo and Avazu datasets, the mutual learning algorithm improved the performance of the model by up to 0.66% relative improvement.
arXiv Detail & Related papers (2024-06-17T20:56:30Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
Recently, model-based reinforcement learning algorithms have demonstrated remarkable efficacy in visual input environments.
We introduce Transformer-based wORld Model (STORM), an efficient world model architecture that combines strong modeling and generation capabilities.
Storm achieves a mean human performance of $126.7%$ on the Atari $100$k benchmark, setting a new record among state-of-the-art methods.
arXiv Detail & Related papers (2023-10-14T16:42:02Z) - Learning Interactive Real-World Simulators [96.5991333400566]
We explore the possibility of learning a universal simulator of real-world interaction through generative modeling.
We use the simulator to train both high-level vision-language policies and low-level reinforcement learning policies.
Video captioning models can benefit from training with simulated experience, opening up even wider applications.
arXiv Detail & Related papers (2023-10-09T19:42:22Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - High Performance Across Two Atari Paddle Games Using the Same Perceptual
Control Architecture Without Training [0.0]
We show that perceptual control models, based on simple assumptions, can perform well without learning.
We conclude by specifying a parsimonious role of learning that may be more similar to psychological functioning.
arXiv Detail & Related papers (2021-08-04T08:00:30Z) - Human-Level Reinforcement Learning through Theory-Based Modeling,
Exploration, and Planning [27.593497502386143]
Theory-Based Reinforcement Learning uses human-like intuitive theories to explore and model an environment.
We instantiate the approach in a video game playing agent called EMPA.
EMPA matches human learning efficiency on a suite of 90 Atari-style video games.
arXiv Detail & Related papers (2021-07-27T01:38:13Z) - Combining Off and On-Policy Training in Model-Based Reinforcement
Learning [77.34726150561087]
We propose a way to obtain off-policy targets using data from simulated games in MuZero.
Our results show that these targets speed up the training process and lead to faster convergence and higher rewards.
arXiv Detail & Related papers (2021-02-24T10:47:26Z) - Mastering Atari with Discrete World Models [61.7688353335468]
We introduce DreamerV2, a reinforcement learning agent that learns behaviors purely from predictions in the compact latent space of a powerful world model.
DreamerV2 constitutes the first agent that achieves human-level performance on the Atari benchmark of 55 tasks by learning behaviors inside a separately trained world model.
arXiv Detail & Related papers (2020-10-05T17:52:14Z) - Neural Game Engine: Accurate learning of generalizable forward models
from pixels [0.0]
This paper introduces the Neural Game Engine, as a way to learn models directly from pixels.
Results on 10 deterministic General Video Game AI games demonstrate competitive performance.
arXiv Detail & Related papers (2020-03-23T20:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.