High Performance Across Two Atari Paddle Games Using the Same Perceptual
Control Architecture Without Training
- URL: http://arxiv.org/abs/2108.01895v1
- Date: Wed, 4 Aug 2021 08:00:30 GMT
- Title: High Performance Across Two Atari Paddle Games Using the Same Perceptual
Control Architecture Without Training
- Authors: Tauseef Gulrez and Warren Mansell
- Abstract summary: We show that perceptual control models, based on simple assumptions, can perform well without learning.
We conclude by specifying a parsimonious role of learning that may be more similar to psychological functioning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (DRL) requires large samples and a long training
time to operate optimally. Yet humans rarely require long periods training to
perform well on novel tasks, such as computer games, once they are provided
with an accurate program of instructions. We used perceptual control theory
(PCT) to construct a simple closed-loop model which requires no training
samples and training time within a video game study using the Arcade Learning
Environment (ALE). The model was programmed to parse inputs from the
environment into hierarchically organised perceptual signals, and it computed a
dynamic error signal by subtracting the incoming signal for each perceptual
variable from a reference signal to drive output signals to reduce this error.
We tested the same model across two different Atari paddle games Breakout and
Pong to achieve performance at least as high as DRL paradigms, and close to
good human performance. Our study shows that perceptual control models, based
on simple assumptions, can perform well without learning. We conclude by
specifying a parsimonious role of learning that may be more similar to
psychological functioning.
Related papers
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
We introduce a novel RL algorithm that learns a critic network that outputs Q-values over a sequence of actions.
By explicitly training the value functions to learn the consequence of executing a series of current and future actions, our algorithm allows for learning useful value functions from noisy trajectories.
arXiv Detail & Related papers (2024-11-19T01:23:52Z) - SHIRE: Enhancing Sample Efficiency using Human Intuition in REinforcement Learning [11.304750795377657]
We propose SHIRE, a framework for encoding human intuition using Probabilistic Graphical Models (PGMs)
SHIRE achieves 25-78% sample efficiency gains across the environments we evaluate at negligible overhead cost.
arXiv Detail & Related papers (2024-09-16T04:46:22Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Learning to Fly in Seconds [7.259696592534715]
We show how curriculum learning and a highly optimized simulator enhance sample complexity and lead to fast training times.
Our framework enables Simulation-to-Reality (Sim2Real) transfer for direct control after only 18 seconds of training on a consumer-grade laptop.
arXiv Detail & Related papers (2023-11-22T01:06:45Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
We introduce an efficient system for learning dexterous manipulation skills withReinforcement learning.
The main idea of our approach is the integration of recent advances in sample-efficient RL and replay buffer bootstrapping.
Our system completes the real-world training cycle by incorporating learned resets via an imitation-based pickup policy.
arXiv Detail & Related papers (2023-09-06T19:05:31Z) - On the Theory of Reinforcement Learning with Once-per-Episode Feedback [120.5537226120512]
We introduce a theory of reinforcement learning in which the learner receives feedback only once at the end of an episode.
This is arguably more representative of real-world applications than the traditional requirement that the learner receive feedback at every time step.
arXiv Detail & Related papers (2021-05-29T19:48:51Z) - Reinforcement Learning for Control of Valves [0.0]
This paper is a study of reinforcement learning (RL) as an optimal-control strategy for control of nonlinear valves.
It is evaluated against the PID (proportional-integral-derivative) strategy, using a unified framework.
arXiv Detail & Related papers (2020-12-29T09:01:47Z) - Decoupling Representation Learning from Reinforcement Learning [89.82834016009461]
We introduce an unsupervised learning task called Augmented Temporal Contrast (ATC)
ATC trains a convolutional encoder to associate pairs of observations separated by a short time difference.
In online RL experiments, we show that training the encoder exclusively using ATC matches or outperforms end-to-end RL.
arXiv Detail & Related papers (2020-09-14T19:11:13Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
We show how video prediction models can enable agents to solve Atari games with fewer interactions than model-free methods.
Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment.
arXiv Detail & Related papers (2019-03-01T15:40:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.