Elements of Sequential Monte Carlo
- URL: http://arxiv.org/abs/1903.04797v3
- Date: Thu, 05 Dec 2024 09:41:31 GMT
- Title: Elements of Sequential Monte Carlo
- Authors: Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön,
- Abstract summary: Core problem in statistics and machine learning is to compute probability distributions and expectations.
Key challenge is to approximate these intractable expectations.
sequential Monte Carlo (SMC) is a random-sampling-based class of methods for approximate inference.
- Score: 21.1067925312595
- License:
- Abstract: A core problem in statistics and probabilistic machine learning is to compute probability distributions and expectations. This is the fundamental problem of Bayesian statistics and machine learning, which frames all inference as expectations with respect to the posterior distribution. The key challenge is to approximate these intractable expectations. In this tutorial, we review sequential Monte Carlo (SMC), a random-sampling-based class of methods for approximate inference. First, we explain the basics of SMC, discuss practical issues, and review theoretical results. We then examine two of the main user design choices: the proposal distributions and the so called intermediate target distributions. We review recent results on how variational inference and amortization can be used to learn efficient proposals and target distributions. Next, we discuss the SMC estimate of the normalizing constant, how this can be used for pseudo-marginal inference and inference evaluation. Throughout the tutorial we illustrate the use of SMC on various models commonly used in machine learning, such as stochastic recurrent neural networks, probabilistic graphical models, and probabilistic programs.
Related papers
- A Monte Carlo Framework for Calibrated Uncertainty Estimation in Sequence Prediction [19.710390261102113]
We propose a Monte Carlo framework to estimate probabilities and confidence intervals associated with the distribution of a discrete sequence.
Our framework uses a Monte Carlo simulator, implemented as an autoregressively trained neural network, to sample sequences conditioned on an image input.
Experiments on synthetic and real data show that the framework produces accurate discriminative predictions, but can suffer from miscalibration.
arXiv Detail & Related papers (2024-10-30T17:53:37Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework for Large Language Models (LLMs)
Namely, we propose novel metrics with high probability guarantees concerning the output distribution of a model.
Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo [7.182174507225034]
We leverage the rich toolkit of Sequential Monte Carlo (SMC) for probabilistic inference problems.
We use learned twist functions to estimate the expected future value of the potential at each timestep.
We present methods for evaluating the accuracy of language model inference techniques.
arXiv Detail & Related papers (2024-04-26T17:18:32Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
We propose a highly adaptable framework, designated as SimPro, which does not rely on any predefined assumptions about the distribution of unlabeled data.
Our framework, grounded in a probabilistic model, innovatively refines the expectation-maximization algorithm.
Our method showcases consistent state-of-the-art performance across diverse benchmarks and data distribution scenarios.
arXiv Detail & Related papers (2024-02-21T03:39:04Z) - Learning Distributions via Monte-Carlo Marginalization [9.131712404284876]
We propose a novel method to learn intractable distributions from their samples.
The Monte-Carlo Marginalization (MCMarg) is proposed to address this issue.
The proposed approach is a powerful tool to learn complex distributions and the entire process is differentiable.
arXiv Detail & Related papers (2023-08-11T19:08:06Z) - SIXO: Smoothing Inference with Twisted Objectives [8.049531918823758]
We introduce SIXO, a method that learns targets that approximate the smoothing distributions.
We then use SMC with these learned targets to define a variational objective for model and proposal learning.
arXiv Detail & Related papers (2022-06-13T07:46:35Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - B\'ezier Curve Gaussian Processes [8.11969931278838]
This paper proposes a new probabilistic sequence model building on probabilistic B'ezier curves.
Combined with a Mixture Density network, Bayesian conditional inference can be performed without the need for mean field variational approximation.
The model is used for pedestrian trajectory prediction, where a generated prediction also serves as a GP prior.
arXiv Detail & Related papers (2022-05-03T19:49:57Z) - Recursive Monte Carlo and Variational Inference with Auxiliary Variables [64.25762042361839]
Recursive auxiliary-variable inference (RAVI) is a new framework for exploiting flexible proposals.
RAVI generalizes and unifies several existing methods for inference with expressive expressive families.
We show RAVI's design framework and theorems by using them to analyze and improve upon Salimans et al.'s Markov Chain Variational Inference.
arXiv Detail & Related papers (2022-03-05T23:52:40Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.