A Monte Carlo Framework for Calibrated Uncertainty Estimation in Sequence Prediction
- URL: http://arxiv.org/abs/2410.23272v1
- Date: Wed, 30 Oct 2024 17:53:37 GMT
- Title: A Monte Carlo Framework for Calibrated Uncertainty Estimation in Sequence Prediction
- Authors: Qidong Yang, Weicheng Zhu, Joseph Keslin, Laure Zanna, Tim G. J. Rudner, Carlos Fernandez-Granda,
- Abstract summary: We propose a Monte Carlo framework to estimate probabilities and confidence intervals associated with the distribution of a discrete sequence.
Our framework uses a Monte Carlo simulator, implemented as an autoregressively trained neural network, to sample sequences conditioned on an image input.
Experiments on synthetic and real data show that the framework produces accurate discriminative predictions, but can suffer from miscalibration.
- Score: 19.710390261102113
- License:
- Abstract: Probabilistic prediction of sequences from images and other high-dimensional data is a key challenge, particularly in risk-sensitive applications. In these settings, it is often desirable to quantify the uncertainty associated with the prediction (instead of just determining the most likely sequence, as in language modeling). In this paper, we propose a Monte Carlo framework to estimate probabilities and confidence intervals associated with the distribution of a discrete sequence. Our framework uses a Monte Carlo simulator, implemented as an autoregressively trained neural network, to sample sequences conditioned on an image input. We then use these samples to estimate the probabilities and confidence intervals. Experiments on synthetic and real data show that the framework produces accurate discriminative predictions, but can suffer from miscalibration. In order to address this shortcoming, we propose a time-dependent regularization method, which is shown to produce calibrated predictions.
Related papers
- Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
We present a family of methods to calibrate prediction intervals for regression problems with local coverage guarantees.
We create a partition by training regression trees and Random Forests on conformity scores.
Our proposal is versatile, as it applies to various conformity scores and prediction settings.
arXiv Detail & Related papers (2024-02-12T01:17:09Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
We propose SMURF-THP, a score-based method for learning Transformer Hawkes process and quantifying prediction uncertainty.
Specifically, SMURF-THP learns the score function of events' arrival time based on a score-matching objective.
We conduct extensive experiments in both event type prediction and uncertainty quantification of arrival time.
arXiv Detail & Related papers (2023-10-25T03:33:45Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series)
We specifically account for the nature that time series data are non-exchangeable, and thus many existing conformal prediction algorithms are not applicable.
arXiv Detail & Related papers (2022-12-07T05:07:27Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
arXiv Detail & Related papers (2022-07-28T16:40:26Z) - B\'ezier Curve Gaussian Processes [8.11969931278838]
This paper proposes a new probabilistic sequence model building on probabilistic B'ezier curves.
Combined with a Mixture Density network, Bayesian conditional inference can be performed without the need for mean field variational approximation.
The model is used for pedestrian trajectory prediction, where a generated prediction also serves as a GP prior.
arXiv Detail & Related papers (2022-05-03T19:49:57Z) - Interpretable Machines: Constructing Valid Prediction Intervals with
Random Forests [0.0]
An important issue when using Machine Learning algorithms in recent research is the lack of interpretability.
A contribution to this gap for the Random Forest Regression Learner is presented here.
Several parametric and non-parametric prediction intervals are provided for Random Forest point predictions.
A thorough investigation through Monte-Carlo simulation is conducted evaluating the performance of the proposed methods.
arXiv Detail & Related papers (2021-03-09T23:05:55Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Individual Calibration with Randomized Forecasting [116.2086707626651]
We show that calibration for individual samples is possible in the regression setup if the predictions are randomized.
We design a training objective to enforce individual calibration and use it to train randomized regression functions.
arXiv Detail & Related papers (2020-06-18T05:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.