論文の概要: Preference Neural Network
- arxiv url: http://arxiv.org/abs/1904.02345v4
- Date: Tue, 18 Apr 2023 13:30:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 19:59:50.879458
- Title: Preference Neural Network
- Title(参考訳): 選好ニューラルネットワーク
- Authors: Ayman Elgharabawy, Mukesh Prasad, Chin-Teng Lin
- Abstract要約: 本稿では,新しいアクティベーション機能を持つ不特定選好順序問題に対処する選好ニューラルネットワーク(PNN)を提案する。
PNNはまた、ラベルが無関心な選好順序やサブグループが等しくランク付けされるようなマルチラベルランキングの問題も解決している。
- 参考スコア(独自算出の注目度): 32.59849445526354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a preference neural network (PNN) to address the problem
of indifference preferences orders with new activation function. PNN also
solves the Multi-label ranking problem, where labels may have indifference
preference orders or subgroups are equally ranked. PNN follows a multi-layer
feedforward architecture with fully connected neurons. Each neuron contains a
novel smooth stairstep activation function based on the number of preference
orders. PNN inputs represent data features and output neurons represent label
indexes. The proposed PNN is evaluated using new preference mining dataset that
contains repeated label values which have not experimented before. PNN
outperforms five previously proposed methods for strict label ranking in terms
of accurate results with high computational efficiency.
- Abstract(参考訳): 本稿では,新しいアクティベーション機能を持つ不特定選好順序問題に対処する選好ニューラルネットワーク(PNN)を提案する。
PNNはまた、ラベルが無関心な選好順序やサブグループが等しくランク付けされるようなマルチラベルランキングの問題を解決する。
PNNは完全な結合ニューロンを持つ多層フィードフォワードアーキテクチャに従う。
各ニューロンは、選好順序の数に基づいて、新しいスムーズな階段活性化関数を含む。
PNN入力はデータの特徴を表し、出力ニューロンはラベルインデックスを表す。
提案するPNNは,実験未実施の繰り返しラベル値を含む新たな選好マイニングデータセットを用いて評価する。
PNNは、計算効率の高い正確な結果の観点から、より厳格なラベルランキングのための5つの提案された手法より優れている。
関連論文リスト
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
スパースニューラルネットワーク(SNN)は、効率的な特徴選択のための強力なツールとして登場した。
動的スパーストレーニング(DST)アルゴリズムで訓練されたSNNは、平均して50%以上のメモリと55%以上のFLOPを削減できることを示す。
以上の結果から,DSTアルゴリズムで訓練したSNNによる特徴選択は,平均して50ドル以上のメモリと55%のFLOPを削減できることがわかった。
論文 参考訳(メタデータ) (2024-08-08T16:48:33Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
我々は最近提案されたDPLLベースの制約DNN検証手法の拡張であるVeriStableを提案する。
完全接続型フィードネットワーク(FNN)、畳み込み型ニューラルネットワーク(CNN)、残留型ネットワーク(ResNet)など、さまざまな課題のあるベンチマークにおいてVeriStableの有効性を評価する。
予備的な結果は、VeriStableは、VNN-COMPの第1および第2のパフォーマーである$alpha$-$beta$-CROWNやMN-BaBなど、最先端の検証ツールよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-19T23:48:04Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Adaptive-saturated RNN: Remember more with less instability [2.191505742658975]
本研究では,2つのアプローチ間の飽和度を動的に調整する適応飽和RNN(asRNN)を提案する。
我々の実験は、いくつかの強力な競合相手と比較して、挑戦的なシーケンス学習ベンチマークにおけるasRNNの結果を奨励することを示した。
論文 参考訳(メタデータ) (2023-04-24T02:28:03Z) - Model-based feature selection for neural networks: A mixed-integer
programming approach [0.9281671380673306]
我々は、ReLUに基づくディープニューラルネットワーク(DNN)のための新しい入力特徴選択フレームワークを開発する。
提示の明確化のための画像分類のための入力特徴の発見に焦点をあてる。
提案した入力特徴選択により,適切な分類精度を維持しつつ,入力のサイズを$sim$15%に劇的に削減できることを示す。
論文 参考訳(メタデータ) (2023-02-20T22:19:50Z) - RankDNN: Learning to Rank for Few-shot Learning [70.49494297554537]
本稿では、画像検索の関連性ランキングをバイナリランキング関係分類として活用する、新しい数ショット学習パイプラインを提案する。
これは、数ショットの学習に関する新しい視点を提供し、最先端の手法を補完する。
論文 参考訳(メタデータ) (2022-11-28T13:59:31Z) - Neural Greedy Pursuit for Feature Selection [72.4121881681861]
我々は,非線形予測問題に対する$P$入力機能のうち,$N$重要な特徴を選択するための欲求アルゴリズムを提案する。
ニューラルネットワークをアルゴリズムの予測子として使用し、損失を計算します。
論文 参考訳(メタデータ) (2022-07-19T16:39:16Z) - Debiased Graph Neural Networks with Agnostic Label Selection Bias [59.61301255860836]
既存のグラフニューラルネットワーク(GNN)のほとんどは、データの選択バイアスを考慮せずに提案されている。
本稿では,デコリレーションレギュレータを区別した新しいデバイアスドグラフニューラルネットワーク(DGNN)を提案する。
DGNNは既存のGNNを強化するフレキシブルなフレームワークである。
論文 参考訳(メタデータ) (2022-01-19T16:50:29Z) - Evaluating Deep Neural Network Ensembles by Majority Voting cum
Meta-Learning scheme [3.351714665243138]
新しいデータインスタンスのために,7つの独立したディープニューラルネットワーク(DNN)のアンサンブルを提案する。
残りのサンプルからブートストラップサンプリングによってデータの7分の1を削除して補充する。
この論文のすべてのアルゴリズムは5つのベンチマークデータセットでテストされている。
論文 参考訳(メタデータ) (2021-05-09T03:10:56Z) - KNN-enhanced Deep Learning Against Noisy Labels [4.765948508271371]
Deep Neural Networks(DNN)の監視学習は、データ空腹である。
本研究では,ラベルクリーンアップに深いKNNを適用することを提案する。
ニューラルネットワークを反復的にトレーニングし、ラベルを更新し、ラベル回復率の向上と分類性能の向上を同時に進める。
論文 参考訳(メタデータ) (2020-12-08T05:21:29Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。