論文の概要: Merging versus Ensembling in Multi-Study Prediction: Theoretical Insight from Random Effects
- arxiv url: http://arxiv.org/abs/1905.07382v4
- Date: Thu, 12 Dec 2024 18:47:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-15 16:05:36.539639
- Title: Merging versus Ensembling in Multi-Study Prediction: Theoretical Insight from Random Effects
- Title(参考訳): マルチスタディ予測におけるマージング対エンセブリング:ランダム効果による理論的考察
- Authors: Zoe Guan, Giovanni Parmigiani, Prasad Patil,
- Abstract要約: データセット間の予測・出力関係における潜在的な不均一性の存在下での2つのマルチスタディ予測手法を比較した。
尾根回帰について解析的に検証し,融合による予測誤差がアンサンブルよりも低いことをシミュレーションにより確認する。
様々なシナリオにおける遷移点の解析式を提供し、その性質を考察し、遷移点理論をメタゲノミクスの応用と組み合わせて研究を決定する方法を説明する。
- 参考スコア(独自算出の注目度): 1.2065918767980095
- License:
- Abstract: A critical decision point when training predictors using multiple studies is whether studies should be combined or treated separately. We compare two multi-study prediction approaches in the presence of potential heterogeneity in predictor-outcome relationships across datasets: 1) merging all of the datasets and training a single learner, and 2) multi-study ensembling, which involves training a separate learner on each dataset and combining the predictions resulting from each learner. For ridge regression, we show analytically and confirm via simulation that merging yields lower prediction error than ensembling when the predictor-outcome relationships are relatively homogeneous across studies. However, as cross-study heterogeneity increases, there exists a transition point beyond which ensembling outperforms merging. We provide analytic expressions for the transition point in various scenarios, study asymptotic properties, and illustrate how transition point theory can be used for deciding when studies should be combined with an application from metagenomics.
- Abstract(参考訳): 複数の研究を用いて予測器を訓練する際の重要な決定ポイントは、研究を別々に組み合わせるか、あるいは治療するかである。
データセット間の予測・出力関係における潜在的な不均一性の存在下での2つのマルチスタディ予測手法を比較した。
1)全てのデータセットをマージし、単一の学習者を訓練し、
2) マルチスタディ・アンサンブルでは,各データセット上で個別の学習者を訓練し,各学習者から得られる予測を組み合わせる。
尾根回帰を解析的に示し、シミュレーションにより、融合により、予測と出力の関係が研究全体を通して比較的均質である場合に、融合よりも低い予測誤差が生じることを確認する。
しかし、クロススタディの不均一性が増大するにつれて、エンハンブルがマージよりも優れる遷移点が存在する。
様々なシナリオにおける遷移点の解析式を提供し、漸近性について研究し、遷移点理論を用いて、メタゲノミクスの応用といつ研究を組み合わすべきかを決定する方法について説明する。
関連論文リスト
- Generative vs. Discriminative modeling under the lens of uncertainty quantification [0.929965561686354]
本稿では,生成的アプローチと識別的アプローチの比較分析を行った。
両手法が,不確実性を考慮した推論において,様々な情報源からの情報を活用する能力を比較する。
本稿では,両手法の教師あり学習と,検討されたモデリング手法と互換性のあるセミ教師あり学習を実現するための一般的なサンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:32:43Z) - Multi-CATE: Multi-Accurate Conditional Average Treatment Effect Estimation Robust to Unknown Covariate Shifts [12.289361708127876]
我々は、CATE T-learnerを後処理するために、マルチ精度の予測子を学習するために方法論を使用する。
このアプローチは、(より大きな)確立された観測データと(より小さな)ランダム化されたデータセットを組み合わせることができることを示す。
論文 参考訳(メタデータ) (2024-05-28T14:12:25Z) - Understanding Forgetting in Continual Learning with Linear Regression [21.8755265936716]
連続的な学習は、複数のタスクを逐次学習することに焦点を当てており、近年大きな注目を集めている。
線形回帰モデルにおいて, 線形回帰モデルをグラディエント・ディッセンス(Gradient Descent)を用いて, 忘れることの一般的な理論的解析を行う。
十分なデータサイズを考慮に入れれば、集団データ共分散行列の固有値が大きいタスクが後で訓練されるようなシーケンス内のタスクの配置は、忘れが増す傾向にあることを実証する。
論文 参考訳(メタデータ) (2024-05-27T18:33:37Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Learning Mixture Structure on Multi-Source Time Series for Probabilistic
Forecasting [4.179947630802189]
本稿では,異なる予測関係を学習するためのニューラルネットワーク構造に基づく確率モデルを提案する。
対象変数の異なる分布に適用可能な予測および不確実性定量化手法を提案する。
論文 参考訳(メタデータ) (2023-02-22T00:51:44Z) - Multi-Study Boosting: Theoretical Considerations for Merging vs.
Ensembling [2.252304836689618]
クロススタディの再現性は、予測の一般化性を強調する強力なモデル評価基準である。
本研究では, 予測・アウトカム関係における潜在的不均一性の存在下での促進アルゴリズムについて検討した。
我々は,1)すべての学習をマージし,単一のモデルを訓練する,2)マルチスタディ・アンサンブル(multi-study ensembling)という2つのマルチスタディ・ラーニング戦略を比較した。
論文 参考訳(メタデータ) (2022-07-11T02:25:47Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
プラグイン推定と擬似出力回帰に依存する4つの幅広いメタ学習戦略を解析する。
この理論的推論を用いて、アルゴリズム設計の原則を導出し、分析を実践に翻訳する方法について強調する。
論文 参考訳(メタデータ) (2021-01-26T17:11:40Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
従来の機械学習手法は、非因果変数によって誘導されるトレーニングデータにおいて、微妙に刺激的な相関を利用して予測する。
本研究では, 条件付き独立性テストに基づくアルゴリズムを提案し, 種子変数を先行変数とする因果変数を分離し, 安定な予測に採用する。
我々のアルゴリズムは、安定した予測のための最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-06-09T06:56:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。