Revisiting Shor's quantum algorithm for computing general discrete logarithms
- URL: http://arxiv.org/abs/1905.09084v4
- Date: Fri, 13 Sep 2024 17:23:47 GMT
- Title: Revisiting Shor's quantum algorithm for computing general discrete logarithms
- Authors: Martin EkerÄ,
- Abstract summary: We show that Shor's algorithm for computing general discrete logarithms achieves an expected success probability of approximately 60% to 82% in a single run.
By slightly increasing the number of group operations that are evaluated quantumly, we show how the algorithm can be further modified to achieve a success probability thatally exceeds 99% in a single run.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We heuristically show that Shor's algorithm for computing general discrete logarithms achieves an expected success probability of approximately 60% to 82% in a single run when modified to enable efficient implementation with the semi-classical Fourier transform. By slightly increasing the number of group operations that are evaluated quantumly and performing a single limited search in the classical post-processing, or by performing two limited searches in the post-processing, we show how the algorithm can be further modified to achieve a success probability that heuristically exceeds 99% in a single run. We provide concrete heuristic estimates of the success probability of the modified algorithm, as a function of the group order $r$, the size of the search space in the classical post-processing, and the additional number of group operations evaluated quantumly. In the limit as $r \rightarrow \infty$, we heuristically show that the success probability tends to one. In analogy with our earlier works, we show how the modified quantum algorithm may be heuristically simulated classically when the logarithm $d$ and $r$ are both known. Furthermore, we heuristically show how slightly better tradeoffs may be achieved, compared to our earlier works, if $r$ is known when computing $d$. We generalize our heuristic to cover some of our earlier works, and compare it to the non-heuristic analyses in those works.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Circuit Implementation and Analysis of a Quantum-Walk Based Search Complement Algorithm [0.3277163122167433]
We propose a modified version of the quantum walk-based search algorithm created by Shenvi, Kempe and Whaley.
The modified evolution operator leads the opposite behavior as in the original algorithm, that is, the probability to measure the target state is reduced.
arXiv Detail & Related papers (2024-05-25T18:11:14Z) - Quantum Algorithms for the Pathwise Lasso [1.8058773918890538]
We present a novel quantum high-dimensional linear regression algorithm based on the classical LARS (Least Angle Regression) pathwise algorithm.
Our quantum algorithm provides the full regularisation path as the penalty term varies, but quadratically faster per iteration under specific conditions.
We prove, via an approximate version of the KKT conditions and a duality gap, that the LARS algorithm is robust to errors.
arXiv Detail & Related papers (2023-12-21T18:57:54Z) - Generalized Hybrid Search and Applications to Blockchain and Hash
Function Security [50.16790546184646]
We first examine the hardness of solving various search problems by hybrid quantum-classical strategies.
We then construct a hybrid quantum-classical search algorithm and analyze its success probability.
arXiv Detail & Related papers (2023-11-07T04:59:02Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - An adaptive Bayesian quantum algorithm for phase estimation [0.0]
We present a coherence-based phase-estimation algorithm which can achieve the optimal quadratic scaling in the mean absolute error and the mean squared error.
In the presence of noise, our algorithm produces errors that approach the theoretical lower bound.
arXiv Detail & Related papers (2023-03-02T19:00:01Z) - Provably Efficient Reinforcement Learning via Surprise Bound [66.15308700413814]
We propose a provably efficient reinforcement learning algorithm (both computationally and statistically) with general value function approximations.
Our algorithm achieves reasonable regret bounds when applied to both the linear setting and the sparse high-dimensional linear setting.
arXiv Detail & Related papers (2023-02-22T20:21:25Z) - Improvement of quantum walk-based search algorithms in single marked
vertex graphs [0.0]
Amplitude amplification is usually used to amplify success probability, but the souffl'e problems follow.
In this work, we define generalized interpolated quantum walks, which can both improve the success probability of search algorithms and avoid the souffl'e problems.
arXiv Detail & Related papers (2022-09-09T07:43:46Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Benchmarks for quantum computers from Shor's algorithm [0.0]
Properties of Shor's algorithm and the related period-finding algorithm could serve as benchmarks for the operation of a quantum computer.
Distinctive universal behaviour is expected for the probability for success of the period-finding as the input quantum register is increased.
arXiv Detail & Related papers (2021-11-27T09:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.