Assessing fault-tolerant quantum advantage for $k$-SAT with structure
- URL: http://arxiv.org/abs/2412.13274v2
- Date: Sat, 21 Dec 2024 10:50:27 GMT
- Title: Assessing fault-tolerant quantum advantage for $k$-SAT with structure
- Authors: Martijn Brehm, Jordi Weggemans,
- Abstract summary: We evaluate the potential of quantum Backtracking and Grover's algorithm against the 2023 SAT competition main track winner.
Our findings suggest that the potential for practical quantum speedups in more structured $k$-SAT solving will remain limited.
- Score: 0.0
- License:
- Abstract: For many problems, quantum algorithms promise speedups over their classical counterparts. However, these results predominantly rely on asymptotic worst-case analysis, which overlooks significant overheads due to error correction and the fact that real-world instances often contain exploitable structure. In this work, we employ the hybrid benchmarking method to evaluate the potential of quantum Backtracking and Grover's algorithm against the 2023 SAT competition main track winner in solving random $k$-SAT instances with tunable structure, designed to represent industry-like scenarios, using both $T$-depth and $T$-count as cost metrics to estimate quantum run times. Our findings reproduce the results of Campbell, Khurana, and Montanaro (Quantum '19) in the unstructured case using hybrid benchmarking. However, we offer a more sobering perspective in practically relevant regimes: almost all quantum speedups vanish, even asymptotically, when minimal structure is introduced or when $T$-count is considered instead of $T$-depth. Moreover, when the requirement is for the algorithm to find a solution within a single day, we find that only Grover's algorithm has the potential to outperform classical algorithms, but only in a very limited regime and only when using $T$-depth. We also discuss how more sophisticated heuristics could restore the asymptotic scaling advantage for quantum backtracking, but our findings suggest that the potential for practical quantum speedups in more structured $k$-SAT solving will remain limited.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Solving QUBOs with a quantum-amenable branch and bound method [0.3749861135832072]
We describe and experimentally validate an exact classical branch and bound solver for quadratic unconstrained binary optimization problems.
Our solver leverages cheap-to-implement bounds from the literature previously proposed for Ising models.
We detail a variety of techniques from high-performance computing and operations research used to boost solver performance.
arXiv Detail & Related papers (2024-07-29T17:13:01Z) - Solving k-SAT problems with generalized quantum measurement [0.7373617024876725]
We generalize the projection-based quantum measurement-driven $k$-SAT algorithm of Benjamin, Zhao, and Fitzsimons to arbitrary strength quantum measurements.
We argue that the algorithm is most efficient with finite time and measurement resources in the continuum limit.
For solvable $k$-SAT problems, the dynamics generated by the algorithm converge deterministically towards target dynamics in the long-time (Zeno) limit.
arXiv Detail & Related papers (2024-06-19T15:05:18Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Mind the $\tilde{\mathcal{O}}$: Asymptotically Better, but Still
Impractical, Quantum Distributed Algorithms [0.0]
We present two algorithms in the Quantum CONGEST-CLIQUE model of distributed computation that succeed with high probability.
The algorithms achieve a lower round and message complexity than any known algorithms in the classical CONGEST-CLIQUE model.
An existing framework for using distributed version of Grover's search algorithm to accelerate triangle finding lies at the core of the speedup.
arXiv Detail & Related papers (2023-04-06T02:18:52Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Time and Query Complexity Tradeoffs for the Dihedral Coset Problem [0.19731444261635428]
Dihedral Coset Problem (DCP) in $Z_N$ has been extensively studied in quantum computing and post-quantum cryptography.
Ettinger-Hoyer algorithm is known to solve the DCP in $O(log(N))$ queries.
We introduce the first algorithm to improve in the linear queries regime over the Ettinger-Hoyer algorithm.
arXiv Detail & Related papers (2022-06-29T05:30:54Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantifying Grover speed-ups beyond asymptotic analysis [0.0]
We consider an approach that combines classical emulation with detailed complexity bounds that include all constants.
We apply our method to some simple quantum speedups of classical algorithms for solving the well-studied MAX-$k$-SAT optimization problem.
This requires rigorous bounds (including all constants) on the expected- and worst-case complexities of two important quantum sub-routines.
arXiv Detail & Related papers (2022-03-09T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.