Zero-Knowledge Proof-of-Identity: Sybil-Resistant, Anonymous Authentication on Permissionless Blockchains and Incentive Compatible, Strictly Dominant Cryptocurrencies
- URL: http://arxiv.org/abs/1905.09093v3
- Date: Mon, 16 Sep 2024 15:25:05 GMT
- Title: Zero-Knowledge Proof-of-Identity: Sybil-Resistant, Anonymous Authentication on Permissionless Blockchains and Incentive Compatible, Strictly Dominant Cryptocurrencies
- Authors: David Cerezo Sánchez,
- Abstract summary: Zero-Knowledge Proof-of-Identity from trusted public certificates (e.g., national identity cards and/or ePassports; eSIM) is introduced here to permissionless blockchains.
The proposed solution effectively limits the number of mining nodes a single individual would be able to run while keeping membership open to everyone.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-Knowledge Proof-of-Identity from trusted public certificates (e.g., national identity cards and/or ePassports; eSIM) is introduced here to permissionless blockchains in order to remove the inefficiencies of Sybil-resistant mechanisms such as Proof-of-Work (i.e., high energy and environmental costs) and Proof-of-Stake (i.e., capital hoarding and lower transaction volume). The proposed solution effectively limits the number of mining nodes a single individual would be able to run while keeping membership open to everyone, circumventing the impossibility of full decentralization and the blockchain scalability trilemma when instantiated on a blockchain with a consensus protocol based on the cryptographic random selection of nodes. Resistance to collusion is also considered. Solving one of the most pressing problems in blockchains, a zk-PoI cryptocurrency is proved to have the following advantageous properties: - an incentive-compatible protocol for the issuing of cryptocurrency rewards based on a unique Nash equilibrium - strict domination of mining over all other PoW/PoS cryptocurrencies, thus the zk-PoI cryptocurrency becoming the preferred choice by miners is proved to be a Nash equilibrium and the Evolutionarily Stable Strategy - PoW/PoS cryptocurrencies are condemned to pay the Price of Crypto-Anarchy, redeemed by the optimal efficiency of zk-PoI as it implements the social optimum - the circulation of a zk-PoI cryptocurrency Pareto dominates other PoW/PoS cryptocurrencies - the network effects arising from the social networks inherent to national identity cards and ePassports dominate PoW/PoS cryptocurrencies - the lower costs of its infrastructure imply the existence of a unique equilibrium where it dominates other forms of payment
Related papers
- Privacy-Preserving Smart Contracts for Permissioned Blockchains: A zk-SNARK-Based Recipe Part-1 [1.7265013728931]
This work proposes a solution utilizing zk-SNARKs to provide privacy in smart contracts and blockchains.
The proposal includes a new type of transactions, called delegated transactions, which enable use cases like Delivery vs Payment (DvP)
arXiv Detail & Related papers (2025-01-06T21:16:33Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - IT Strategic alignment in the decentralized finance (DeFi): CBDC and digital currencies [49.1574468325115]
Decentralized finance (DeFi) is a disruptive-based financial infrastructure.
This paper seeks to answer two main questions 1) What are the common IT elements in the DeFi?
And 2) How the elements to the IT strategic alignment in DeFi?
arXiv Detail & Related papers (2024-05-17T10:19:20Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - MRL-PoS: A Multi-agent Reinforcement Learning based Proof of Stake Consensus Algorithm for Blockchain [0.18641315013048293]
This paper introduces MRL-PoS, a Proof-of-Stake consensus algorithm based on multi-agent reinforcement learning.
It incorporates a system of rewards and penalties to eliminate malicious nodes and incentivize honest ones.
arXiv Detail & Related papers (2023-12-14T16:58:18Z) - Towards Measuring the Traceability of Cryptocurrencies [0.5371337604556311]
We put forward a formal framework to measure the (un)traceability and anonymity of cryptocurrencies.
Our work provides the first practical, efficient, and probabilistic measure to assess the traceability of cryptocurrencies.
We implement and extensively evaluate our proposed traceability measure on several cryptocurrency transaction graphs.
arXiv Detail & Related papers (2022-11-08T14:08:39Z) - Efficient quantum non-fungible tokens for blockchain [0.0]
Non-fungible tokens (NFTs) consolidate the best characteristics of blockchain technology to deliver unique and bona fide tokens.
Current classical NFTs are suffering from high costs regarding the consumed power of mining and lack of security.
This paper presents a new protocol for preparing quantum non-fungible tokens where a quantum state representing NFT is mounted on a blockchain instead of physically giving it to the owner.
arXiv Detail & Related papers (2022-09-02T13:36:55Z) - Bitcoin-Enhanced Proof-of-Stake Security: Possibilities and Impossibilities [45.90740335615872]
Bitcoin is the most secure blockchain in the world, supported by the immense hash power of its Proof-of-Work miners.
Proof-of-Stake chains are energy-efficient, have fast finality but face several security issues.
We show that these security issues are inherent in any PoS chain without an external trusted source.
We propose a new protocol, Babylon, where an off-the-shelf PoS protocol checkpoints onto Bitcoin to resolve these issues.
arXiv Detail & Related papers (2022-07-18T06:01:25Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.