MRL-PoS: A Multi-agent Reinforcement Learning based Proof of Stake Consensus Algorithm for Blockchain
- URL: http://arxiv.org/abs/2312.09123v1
- Date: Thu, 14 Dec 2023 16:58:18 GMT
- Title: MRL-PoS: A Multi-agent Reinforcement Learning based Proof of Stake Consensus Algorithm for Blockchain
- Authors: Tariqul Islam, Faisal Haque Bappy, Tarannum Shaila Zaman, Md Sajidul Islam Sajid, Mir Mehedi Ahsan Pritom,
- Abstract summary: This paper introduces MRL-PoS, a Proof-of-Stake consensus algorithm based on multi-agent reinforcement learning.
It incorporates a system of rewards and penalties to eliminate malicious nodes and incentivize honest ones.
- Score: 0.18641315013048293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The core of a blockchain network is its consensus algorithm. Starting with the Proof-of-Work, there have been various versions of consensus algorithms, such as Proof-of-Stake (PoS), Proof-of-Authority (PoA), and Practical Byzantine Fault Tolerance (PBFT). Each of these algorithms focuses on different aspects to ensure efficient and reliable processing of transactions. Blockchain operates in a decentralized manner where there is no central authority and the network is composed of diverse users. This openness creates the potential for malicious nodes to disrupt the network in various ways. Therefore, it is crucial to embed a mechanism within the blockchain network to constantly monitor, identify, and eliminate these malicious nodes. However, there is no one-size-fits-all mechanism to identify all malicious nodes. Hence, the dynamic adaptability of the blockchain network is important to maintain security and reliability at all times. This paper introduces MRL-PoS, a Proof-of-Stake consensus algorithm based on multi-agent reinforcement learning. MRL-PoS employs reinforcement learning for dynamically adjusting to the behavior of all users. It incorporates a system of rewards and penalties to eliminate malicious nodes and incentivize honest ones. Additionally, MRL-PoS has the capability to learn and respond to new malicious tactics by continually training its agents.
Related papers
- Securing Proof of Stake Blockchains: Leveraging Multi-Agent Reinforcement Learning for Detecting and Mitigating Malicious Nodes [0.2982610402087727]
MRL-PoS+ is a novel consensus algorithm to enhance the security of PoS blockchains.
We show that MRL-PoS+ significantly improves the attack resilience of PoS blockchains.
arXiv Detail & Related papers (2024-07-30T17:18:03Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Fuzzychain: An Equitable Consensus Mechanism for Blockchain Networks [12.433289572707212]
Fuzzychain is a proposed solution to the drawbacks of Proof of Stake (PoS)
It introduces the use of fuzzy sets to define stake semantics, promoting decentralised and distributed processing control.
Our results indicate that Fuzzychain not only matches PoS in functionality but also ensures a fairer distribution of stakes among validators.
arXiv Detail & Related papers (2024-04-20T10:01:40Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - TBDD: A New Trust-based, DRL-driven Framework for Blockchain Sharding in IoT [25.15169926146292]
Integrating sharded blockchain with IoT presents a solution for trust issues and optimized data flow.
Deep Reinforcement Learning adeptly handles dynamic, complex systems and multi-dimensional optimization.
textscTbDd discerns node types and performs targeted resharding against potential threats.
arXiv Detail & Related papers (2024-01-01T01:57:28Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
We propose a secure and reliable federated learning system based on blockchain and distributed ledger technology.
Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors.
arXiv Detail & Related papers (2023-07-02T11:23:33Z) - Blockchain Framework for Artificial Intelligence Computation [1.8148198154149393]
We design the block verification and consensus mechanism as a deep reinforcement-learning process.
Our method is used to design the next generation of public blockchain networks.
arXiv Detail & Related papers (2022-02-23T01:44:27Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Byzantine-resilient Decentralized Stochastic Gradient Descent [85.15773446094576]
We present an in-depth study towards the Byzantine resilience of decentralized learning systems.
We propose UBAR, a novel algorithm to enhance decentralized learning with Byzantine Fault Tolerance.
arXiv Detail & Related papers (2020-02-20T05:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.