論文の概要: FDive: Learning Relevance Models using Pattern-based Similarity Measures
- arxiv url: http://arxiv.org/abs/1907.12489v4
- Date: Tue, 14 May 2024 12:57:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 20:27:15.186840
- Title: FDive: Learning Relevance Models using Pattern-based Similarity Measures
- Title(参考訳): FDive:パターンに基づく類似度尺度を用いた関連モデルの学習
- Authors: Frederik L. Dennig, Tom Polk, Zudi Lin, Tobias Schreck, Hanspeter Pfister, Michael Behrisch,
- Abstract要約: FDiveは視覚的に探索可能な関連モデルの作成を支援する視覚的能動学習システムである。
最適な類似度尺度に基づいて、インタラクティブな自己組織化マップベースの関連モデルを算出する。
また、その正確性を改善するために、さらに関連性フィードバックを自動で促す。
- 参考スコア(独自算出の注目度): 27.136998442865217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of interesting patterns in large high-dimensional datasets is difficult because of their dimensionality and pattern complexity. Therefore, analysts require automated support for the extraction of relevant patterns. In this paper, we present FDive, a visual active learning system that helps to create visually explorable relevance models, assisted by learning a pattern-based similarity. We use a small set of user-provided labels to rank similarity measures, consisting of feature descriptor and distance function combinations, by their ability to distinguish relevant from irrelevant data. Based on the best-ranked similarity measure, the system calculates an interactive Self-Organizing Map-based relevance model, which classifies data according to the cluster affiliation. It also automatically prompts further relevance feedback to improve its accuracy. Uncertain areas, especially near the decision boundaries, are highlighted and can be refined by the user. We evaluate our approach by comparison to state-of-the-art feature selection techniques and demonstrate the usefulness of our approach by a case study classifying electron microscopy images of brain cells. The results show that FDive enhances both the quality and understanding of relevance models and can thus lead to new insights for brain research.
- Abstract(参考訳): 大規模な高次元データセットにおける興味深いパターンの検出は、その次元性やパターンの複雑さのために困難である。
したがって、アナリストは関連するパターンの抽出を自動でサポートする必要がある。
本稿では、パターンに基づく類似性学習を支援する、視覚的に探索可能な関連モデルの作成を支援する視覚活動学習システムFDiveを提案する。
特徴記述子と距離関数の組み合わせからなる類似度尺度を、関係のないデータと区別する能力によってランク付けするために、ユーザ提供ラベルの小さなセットを用いる。
最適な類似度尺度に基づいて、クラスタのアフィリエイトに応じてデータを分類する、インタラクティブな自己組織化マップベースの関連モデルを算出する。
また、その正確性を改善するために、さらに関連性フィードバックを自動で促す。
未確定領域、特に決定境界付近は強調表示され、ユーザによって洗練される。
我々は、最先端の特徴選択技術との比較によるアプローチの評価を行い、脳細胞の電子顕微鏡像の分類によるアプローチの有用性を実証した。
その結果、FDiveは関連モデルの品質と理解を向上し、脳研究に新たな洞察をもたらす可能性が示唆された。
関連論文リスト
- Visual Commonsense based Heterogeneous Graph Contrastive Learning [79.22206720896664]
視覚的推論タスクをより良く仕上げるための異種グラフコントラスト学習法を提案する。
本手法はプラグイン・アンド・プレイ方式として設計されており,多種多様な代表手法と迅速かつ容易に組み合わせることができる。
論文 参考訳(メタデータ) (2023-11-11T12:01:18Z) - Towards the Visualization of Aggregated Class Activation Maps to Analyse
the Global Contribution of Class Features [0.47248250311484113]
クラスアクティベーションマップ(CAM)は、分類に寄与するデータサンプルの各機能の重要性を視覚化する。
複数のサンプルからCAMを集約し,意味的に構造化されたデータの分類のグローバルな説明を示す。
我々のアプローチでは,分析者が高次元データの重要な特徴を検出し,世界的説明の可視化に基づいてAIモデルに調整を導出することができる。
論文 参考訳(メタデータ) (2023-07-29T11:13:11Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Self-service Data Classification Using Interactive Visualization and
Interpretable Machine Learning [9.13755431537592]
Iterative Visual Logical (IVLC) は、解釈可能な機械学習アルゴリズムである。
IVLCは、医療領域における癌データのような機密で重要なデータを扱う際に特に有用である。
この章では、新しいコーディネートオーダー(COO)アルゴリズムと遺伝的アルゴリズムを組み合わせた自動分類手法を提案する。
論文 参考訳(メタデータ) (2021-07-11T05:39:14Z) - Interactive slice visualization for exploring machine learning models [0.0]
予測空間のスライスをインタラクティブに可視化し,解釈可能性の低下に対処する。
具体的には,機械学習アルゴリズムのブラックボックスを開放し,モデルの適合性を疑問視し,説明し,検証し,比較する。
論文 参考訳(メタデータ) (2021-01-18T10:47:53Z) - Latent Feature Representation via Unsupervised Learning for Pattern
Discovery in Massive Electron Microscopy Image Volumes [4.278591555984395]
特に,データセットにおける意味的類似性を捉える潜在表現を学ぶための教師なしのディープラーニングアプローチを提案する。
動物脳の比較的小さな部分でもテラバイトの画像を要求できるナノスケールの電子顕微鏡データに適用する手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-12-22T17:14:19Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Feature Learning for Accelerometer based Gait Recognition [0.0]
オートエンコーダは、特徴学習能力に関して、差別的なエンドツーエンドモデルに非常に近い。
完全な畳み込みモデルは 訓練戦略に関係なく 優れた特徴表現を学べます
論文 参考訳(メタデータ) (2020-07-31T10:58:01Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。