Quantum Algorithm for Finding the Optimal Variable Ordering for Binary Decision Diagrams
- URL: http://arxiv.org/abs/1909.12658v3
- Date: Fri, 16 May 2025 06:01:46 GMT
- Title: Quantum Algorithm for Finding the Optimal Variable Ordering for Binary Decision Diagrams
- Authors: Seiichiro Tani,
- Abstract summary: An ordered binary decision diagram (OBDD) is a directed acyclic graph that represents a Boolean function.<n>This paper shows that a further speedup is possible with quantum computers by demonstrating the existence of a quantum algorithm that produces a minimum OBDD.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: An ordered binary decision diagram (OBDD) is a directed acyclic graph that represents a Boolean function. OBDDs are also known as special cases of oblivious read-once branching programs in the field of complexity theory. Since OBDDs have many nice properties as data structures, they have been extensively studied for decades in both theoretical and practical fields, such as VLSI design, formal verification, machine learning, and combinatorial problems. Arguably, the most crucial problem in using OBDDs is that they may vary exponentially in size depending on their variable ordering (i.e., the order in which the variable are to read) when they represent the same function. Indeed, it is NP hard to find an optimal variable ordering that minimizes an OBDD for a given function. Hence, numerous studies have sought heuristics to find an optimal variable ordering. From practical as well as theoretical points of view, it is also important to seek algorithms that output optimal solutions with lower (exponential) time complexity than trivial brute-force algorithms do. Friedman and Supowit provided a clever deterministic algorithm with time/space complexity $O^\ast(3^n)$, where $n$ is the number of variables of the function, which is much better than the trivial brute-force bound $O^\ast(n!2^n)$. This paper shows that a further speedup is possible with quantum computers by demonstrating the existence of a quantum algorithm that produces a minimum OBDD together with the corresponding variable ordering in $O^\ast(2.77286^n)$ time and space with an exponentially small error. Moreover, this algorithm can be adapted to constructing other minimum decision diagrams such as zero-suppressed BDDs, which provide compact representations of sparse sets and are often used in the field of discrete optimization and enumeration.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Moderate Exponential-time Quantum Dynamic Programming Across the Subsets for Scheduling Problems [0.20971479389679337]
Combination of Quantum Minimum Finding and dynamic programming has proved particularly efficient in improving the complexity of NP-hard problems.
In this paper, we provide a bounded-error hybrid algorithm that achieves such an improvement for a broad class of NP-hard single-machine scheduling problems.
Our algorithm reduces the exponential-part complexity compared to the best-known classical algorithm, sometimes at the cost of an additional pseudo-polynomial factor.
arXiv Detail & Related papers (2024-08-11T10:28:49Z) - Near-Optimal Quantum Algorithms for Bounded Edit Distance and Lempel-Ziv
Factorization [2.684542790908823]
We present a quantum $tildeO(sqrtnk+k2)$-time algorithm that uses $tildeO(sqrtnz)$ queries, where $tildeO(cdot)$ hides polylogarithmic factors.
Our second main contribution is a quantum algorithm that achieves the optimal time complexity of $tildeO(sqrtnz)$.
arXiv Detail & Related papers (2023-11-03T09:09:23Z) - Deterministic Nonsmooth Nonconvex Optimization [82.39694252205011]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.<n>Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Choosing the Right Algorithm With Hints From Complexity Theory [16.33500498939925]
We show that the Metropolis algorithm is clearly the best of all algorithms regarded for reasonable problem sizes.
An artificial algorithm of this type having an $O(n log n)$ runtime leads to the result that the significance-based compact genetic algorithm (sig-cGA) can solve the DLB problem in time $O(n log n)$ with high probability.
arXiv Detail & Related papers (2021-09-14T11:12:32Z) - Time and Query Optimal Quantum Algorithms Based on Decision Trees [2.492300648514128]
We show that a quantum algorithm can be implemented in time $tilde O(sqrtGT)$.
Our algorithm is based on non-binary span programs and their efficient implementation.
arXiv Detail & Related papers (2021-05-18T06:51:11Z) - Submodular Maximization subject to a Knapsack Constraint: Combinatorial
Algorithms with Near-optimal Adaptive Complexity [13.416309759182635]
We obtain the first constant approximation for non-monotone submodular algorithms with near-optimal $O(log n)$ adaptive complexity.
Our algorithm asks $tildeO(n2)$ value queries, but can be modified to run with only $tildeO(n)$ instead.
This is also the first approach with sublinear adaptive complexity for the problem and yields comparable to the state-of-the-art even for special cases of cardinality constraints or monotone objectives.
arXiv Detail & Related papers (2021-02-16T18:15:51Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Efficient Permutation Discovery in Causal DAGs [9.22466799504763]
We introduce an efficient algorithm for finding sparse permutations of a directed acyclic graph.
We show that our method with depth $w$ runs in $O(pw+3)$ time.
We also compare our algorithm to provably consistent causal structure learning algorithms, such as the PC algorithm, GES, and GSP, and show that our method achieves comparable performance with a shorter runtime.
arXiv Detail & Related papers (2020-11-06T21:56:41Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.