Statistical Linear Models in Virus Genomic Alignment-free Classification: Application to Hepatitis C Viruses
- URL: http://arxiv.org/abs/1910.05421v3
- Date: Tue, 28 May 2024 21:23:11 GMT
- Title: Statistical Linear Models in Virus Genomic Alignment-free Classification: Application to Hepatitis C Viruses
- Authors: Amine M. Remita, Abdoulaye Baniré Diallo,
- Abstract summary: This study explores the power of linear classifiers in genotyping and subtyping partial and complete genomes.
It is applied to the Hepatitis C viruses (HCV)
Overall, several classifiers perform well given a set of precise combination of the experimental variables.
- Score: 2.900522306460408
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Viral sequence classification is an important task in pathogen detection, epidemiological surveys and evolutionary studies. Statistical learning methods are widely used to classify and identify viral sequences in samples from environments. These methods face several challenges associated with the nature and properties of viral genomes such as recombination, mutation rate and diversity. Also, new generations of sequencing technologies rise other difficulties by generating massive amounts of fragmented sequences. While linear classifiers are often used to classify viruses, there is a lack of exploration of the accuracy space of existing models in the context of alignment free approaches. In this study, we present an exhaustive assessment procedure exploring the power of linear classifiers in genotyping and subtyping partial and complete genomes. It is applied to the Hepatitis C viruses (HCV). Several variables are considered in this investigation such as classifier types (generative and discriminative) and their hyper-parameters (smoothing value and regularization penalty function), the classification task (genotyping and subtyping), the length of the tested sequences (partial and complete) and the length of k-mer words. Overall, several classifiers perform well given a set of precise combination of the experimental variables mentioned above. Finally, we provide the procedure and benchmark data to allow for more robust assessment of classification from virus genomes.
Related papers
- VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - PCD2Vec: A Poisson Correction Distance-Based Approach for Viral Host
Classification [0.966840768820136]
Coronaviruses are membrane-enveloped, non-segmented positive-strand RNA viruses belonging to the Coronaviridae family.
In the Coronavirus genome, an essential structural region is the spike region, and it's responsible for attaching the virus to the host cell membrane.
We propose a novel method for predicting the host specificity of coronaviruses by analyzing spike protein sequences from different viral subgenera and species.
arXiv Detail & Related papers (2023-04-13T03:02:22Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Optirank: classification for RNA-Seq data with optimal ranking reference
genes [0.0]
We propose a logistic regression model, optirank, which learns simultaneously the parameters of the model and the genes to use as a reference set in the ranking.
We also consider real classification tasks, which present different kinds of distribution shifts between train and test data.
arXiv Detail & Related papers (2023-01-11T10:49:06Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z) - Effective and scalable clustering of SARS-CoV-2 sequences [0.41998444721319206]
SARS-CoV-2 continues to mutate as it spreads, according to an evolutionary process.
The number of currently available sequences of SARS-CoV-2 in public databases such as GISAID is already several million.
We propose an approach based on clustering sequences to identify the current major SARS-CoV-2 variants.
arXiv Detail & Related papers (2021-08-18T13:32:43Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance.
We also show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USA's Centers for Disease Control and Prevention (CDC)
arXiv Detail & Related papers (2021-08-07T15:08:15Z) - Mycorrhiza: Genotype Assignment usingPhylogenetic Networks [2.286041284499166]
We introduce Mycorrhiza, a machine learning approach for the genotype assignment problem.
Our algorithm makes use of phylogenetic networks to engineer features that encode the evolutionary relationships among samples.
Mycorrhiza yields particularly significant gains on datasets with a large average fixation index (FST) or deviation from the Hardy-Weinberg equilibrium.
arXiv Detail & Related papers (2020-10-14T02:36:27Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.