Image Restoration Using Deep Regulated Convolutional Networks
- URL: http://arxiv.org/abs/1910.08853v2
- Date: Fri, 21 Jun 2024 18:35:46 GMT
- Title: Image Restoration Using Deep Regulated Convolutional Networks
- Authors: Peng Liu, Xiaoxiao Zhou, Yangjunyi Li, El Basha Mohammad D, Ruogu Fang,
- Abstract summary: We propose the Deep Regulated Convolutional Network (RC-Net), a deep network composed of regulated sub-network blocks cascaded by skip-connections.
RC-Nets have several compelling advantages: they embrace diversified features through large-small filter combinations, alleviate the hazy boundary and blurred details in image denoising and super-resolution problems.
Our proposed RC-Nets outperform state-of-the-art approaches with significant performance gains in various image restoration tasks while demonstrating promising generalization ability.
- Score: 2.608905180175928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the depth of convolutional neural networks has attracted substantial attention in the deep learning research, the width of these networks has recently received greater interest. The width of networks, defined as the size of the receptive fields and the density of the channels, has demonstrated crucial importance in low-level vision tasks such as image denoising and restoration. However, the limited generalization ability, due to the increased width of networks, creates a bottleneck in designing wider networks. In this paper, we propose the Deep Regulated Convolutional Network (RC-Net), a deep network composed of regulated sub-network blocks cascaded by skip-connections, to overcome this bottleneck. Specifically, the Regulated Convolution block (RC-block), featured by a combination of large and small convolution filters, balances the effectiveness of prominent feature extraction and the generalization ability of the network. RC-Nets have several compelling advantages: they embrace diversified features through large-small filter combinations, alleviate the hazy boundary and blurred details in image denoising and super-resolution problems, and stabilize the learning process. Our proposed RC-Nets outperform state-of-the-art approaches with significant performance gains in various image restoration tasks while demonstrating promising generalization ability. The code is available at https://github.com/cswin/RC-Nets.
Related papers
- TBSN: Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising [94.09442506816724]
Blind-spot networks (BSN) have been prevalent network architectures in self-supervised image denoising (SSID)
We present a transformer-based blind-spot network (TBSN) by analyzing and redesigning the transformer operators that meet the blind-spot requirement.
For spatial self-attention, an elaborate mask is applied to the attention matrix to restrict its receptive field, thus mimicking the dilated convolution.
For channel self-attention, we observe that it may leak the blind-spot information when the channel number is greater than spatial size in the deep layers of multi-scale architectures.
arXiv Detail & Related papers (2024-04-11T15:39:10Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
arXiv Detail & Related papers (2022-11-17T11:06:29Z) - Rethinking Performance Gains in Image Dehazing Networks [25.371802581339576]
We make minimal modifications to popular U-Net to obtain a compact dehazing network.
Specifically, we swap out the convolutional blocks in U-Net for residual blocks with the gating mechanism.
With a significantly reduced overhead, gUNet is superior to state-of-the-art methods on multiple image dehazing datasets.
arXiv Detail & Related papers (2022-09-23T07:14:48Z) - Structured Sparsity Learning for Efficient Video Super-Resolution [99.1632164448236]
We develop a structured pruning scheme called Structured Sparsity Learning (SSL) according to the properties of video super-resolution (VSR) models.
In SSL, we design pruning schemes for several key components in VSR models, including residual blocks, recurrent networks, and upsampling networks.
arXiv Detail & Related papers (2022-06-15T17:36:04Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - Deep Learning without Shortcuts: Shaping the Kernel with Tailored
Rectifiers [83.74380713308605]
We develop a new type of transformation that is fully compatible with a variant of ReLUs -- Leaky ReLUs.
We show in experiments that our method, which introduces negligible extra computational cost, validation accuracies with deep vanilla networks that are competitive with ResNets.
arXiv Detail & Related papers (2022-03-15T17:49:08Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - Deep Networks for Image and Video Super-Resolution [30.75380029218373]
Single image super-resolution (SISR) is built using efficient convolutional units we refer to as mixed-dense connection blocks (MDCB)
We train two versions of our network to enhance complementary image qualities using different loss configurations.
We further employ our network for super-resolution task, where our network learns to aggregate information from multiple frames and maintain-temporal consistency.
arXiv Detail & Related papers (2022-01-28T09:15:21Z) - DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction [0.0]
A receptive field (ERF) and a higher resolution of spatial features within a network are essential for providing higher-resolution dense estimates.
We present a systemic approach to design network architectures that can provide a larger receptive field while maintaining a higher spatial feature resolution.
arXiv Detail & Related papers (2021-07-09T23:15:34Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.